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Abstract

This dissertation takes two approaches – martingale and backward stochastic differen-
tial equation (BSDE) – to solve non-zero-sum stochastic differential games in which all
players can control and stop the reward streams of the games.Existence of equilibrium
stopping rules is proved under some assumptions.

The martingale part provides an equivalent martingale characterization of Nash equilib-
rium strategies of the games. When using equilibrium stopping rules, Isaacs’ condition
is necessary and sufficient for the existence of an equilibrium control set.

The BSDE part shows that solutions to BSDEs provide value processes of the games.
A multidimensional BSDE with reflecting barrier is studied in two cases for its solu-
tion: existence and uniqueness with Lipschitz growth, and existence in a Markovian
system with linear growth rate.
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Chapter 1

Bibliographical Notes

Game theory is deeply rooted in history, benefiting since ancient times, yet human
beings did not seem to have mathematically brought it to any higher level until early
the twentieth century. Despite of the Nobel prize for John Nash’s ”Nash equilibrium”,
among other Nobel Laureates on game theory, twentieth century achievements on non-
zero-sum games were not well known to the great majority until an Oscar film called
”A Beautiful Mind” was release byUniversal Picturesin the year 2001. If there has
to be a simplest and understandable example on non-zero-sumgame and Nash equi-
librium, go watching the movie. Author of this dissertationwas lucky enough to have
heard the following dialogue (not every word exactly recorded).

(11th March 2009, Columbia University)

Kuhn : Don’t learn game theory from the movie. The blonde thing is not a Nash
equilibrium!
Odifreddi : How you invented the theory, I mean, the story about the blonde, was it
real?
Nash : No!!!
Odifreddi : Did you apply game theory to win Alicia?
Nash : ...Yes...

(followed by 10 min’s discussion on personal life and game theory)

1.1 From zero-sum to non-zero-sum games

1.1.1 Von Neumann and zero-sum games

Von Neumann moved to Princeton University in 1928, where he popularized the study
of game theory. Von Neumann and coworkers’ main achievements on games were
about those where one player’s reward is identically the other player’s lost, formally

1
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called ”zero-sum” games.

In a zero-sum game, there are two players I and II, whose generic strategies are re-
spectively denoted ass1 ands2, andR(s1, s2) a reward for Player I and cost to Player II
that is subject to the players’ strategies (s1, s2). Simultaneously, Player I tries to max-
imize the reward and Player II minimizes it. Since Player I does not necessarily know
the strategy that Player II is employing, he would maximize his reward with strategy
s1, assuming Player II makes it the least favorable by minimizing the same quantityR
with strategys2. The resulting reward

V = sup
s1

inf
s2

R(s1, s2) (1.1.1)

is called ”lower value” of the zero-sum game. Symmetrically, Player II would minimize
his cost in Player I’s most favorable choice, resulting in ”upper value”

V̄ = inf
s2

sup
s1

R(s1, s2) (1.1.2)

of the game.

Lower value of a game is apparently no larger than the upper value. When the two
values identify with each other, they are called ”the value”of the game. The zero-sum
game is then said to ”have a value”. The optimal pair of strategies (s∗1, s

∗
2) that achieves

the upper and the lower values is called a ”saddle point”.

Definition 1.1.1 A saddle point(s∗1, s
∗
2) of a zero-sum game is a single pair of strategies

that attains bothsup infin the lower value (1.1.1) andinf supin the upper value (1.1.2).
When a saddle exists,

V = sup
s1

inf
s2

R(s1, s2) = inf
s2

sup
s1

R(s1, s2) = V̄. (1.1.3)

Another definition of a saddle point (s∗1, s
∗
2) respects the stability that the optimal strate-

gies produce. When Player II employs strategys∗2, the strategys∗1 had better maximize
the rewardR over all possible strategies for Player I. When Player I employs strategy
s∗1, the strategys∗2 had better minimize the costRover all possible strategies for Player
II. This way, neither Player is likely to deviate from his optimal strategy.

Definition 1.1.2 A saddle point(s∗1, s
∗
2) of a zero-sum game is a pair of strategies such

that
R(s1, s

∗
2) ≤ R(s∗1, s

∗
2) ≤ R(s∗1, s2). (1.1.4)

The two definitions of a saddle are equivalent. If the pair of strategies (s∗1, s
∗
2) attains

inf sup and sup inf, then

R(s∗1, s
∗
2) = inf

s2

sup
s1

R(s1, s2) = inf
s2

R(s∗1, s2) ≤ R(s∗1, s2), for anys2, (1.1.5)

and

R(s∗1, s
∗
2) = sup

s1

inf
s2

R(s1, s2) = sup
s1

R(s1, s
∗
2) ≥ R(s1, s

∗
2), for anys1. (1.1.6)
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Suppose (s∗1, s
∗
2) satisfies inequality (1.1.4). Taking supremum over all admissible

strategiess1 of Player I, and infimum over all admissible strategiess2 of Player II,
inequality (1.1.4) becomes

sup
s1

R(s1, s
∗
2) ≤ R(s∗1, s

∗
2) ≤ inf

s2

R(s∗1, s2). (1.1.7)

Since inf
s2

sup
s1

R(s1, s2) ≤ sup
s1

R(s1, s∗2), and inf
s2

R(s∗1, s2) ≤ sup
s1

inf
s2

R(s1, s2), inequality

(1.1.7) produces

inf
s2

sup
s1

R(s1, s
∗
2) ≤ R(s∗1, s

∗
2) ≤ sup

s1

inf
s2

R(s∗1, s2). (1.1.8)

But that
sup

s1

inf
s2

R(s∗1, s2) ≤ inf
s2

sup
s1

R(s1, s
∗
2) (1.1.9)

always holds true, there has to be

sup
s1

inf
s2

R(s1, s2) = R(s∗1, s
∗
2) = inf

s2

sup
s1

R(s1, s2). (1.1.10)

As an example from finance, signing contract on one contingent claim is a zero-sum
game. The writer’s profit/loss is identically the buyer’s loss/profit. Take a European
call option (ST − K)+ for example. At maturityT, is the stock price $ST is higher
than the strike priceK, the contract forces writer to sell the stock worthy of $ST to
the buyer at price $K. The buyer can sell the stock on the market at price $ST . In
this case the different $ (ST − K) between market price and strike price is profit for the
buyer and missed profit for the writer. If stock price falls below strike price at maturity,
then the buyer does not need to take any action. From the writer’s point of view, such
a contract should not be delivered for free. He charges the buyer a price $P for the
option to buy low. When stock price goes above strike price, the buyer wins and the
seller loses $ ((ST −K)−P). When stock price goes below strike price, the buyer loses
and the seller wins $P. How much writer of a contract should charge the buyer is the
theme question answered by theories on option pricing.

1.1.2 John Nash and non-zero-sum games

Besides zero-sum games, there exist games with multiple players where the players’
rewards do not necessarily sum up to a constant. Questions like how to reach some
pleasant stability for all parties concerned lead to the development of non-zero-sum
games.

In John Nash’s 1949 one-page Nobel Prize winning paper, he wrote:

One may define a concept ofAN n-PERSON GAME in which each player has a fi-
nite set of pure strategies and in which a definite set of payments to the n players
corresponds to each n-tuple of pure strategies, one strategy being taken by each player.
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One such n-tuple counters another if the strategy of each player in the countering
n-tuple yields the highest obtainable expectation for its player against the n− 1 strate-
gies of the other players in the countered n-tuple. A self-countering n-tuple is called
AN EQUILIBRIUM POINT.

Translating Nash’s definitions into twenty-first century plain English. A non-zero-sum
game is the game in which each player chooses a strategy as hisbest response to other
players’ strategies. An equilibrium is a set of strategies,such that, when applied, no
player will profit from unilaterally changing his own strategy. Equivalently, the equi-
librium was a fixed point of the mapping from a given set of strategies to the set of
strategies as the players’ best responses to the given set.

Definition 1.1.3 In a non-zero-sum game of N Players, each player, indexed by i, can
choose a strategy si . Player i receives a reward Ri(s1, · · · , sN) related to the N Players’
strategies. An equilibrium(s∗1, · · · , s

∗
N) of the non-zero-sum game is a set of strategies,

such that

R1(s∗1, s
∗
2, · · · , s

∗
N) ≥ R1(s1, s

∗
2, · · · , s

∗
N), for any s1;

R2(s∗1, s
∗
2, · · · , s

∗
N) ≥ R2(s∗1, s2, · · · , s

∗
N), for any s2;

...

R1(s∗1, s
∗
2, · · · , s

∗
N) ≥ R1(s∗1, s

∗
2, · · · , sN), for any sN.

(1.1.11)

To credit Nash’s formulation of this equilibrium, the equilibrium set of strategies as
in Definition 1.1.3 is conventionally called ”Nash equilibrium”. It is indeed an equi-
librium, for when imposed to all Players, no rational Playerwill want to change for a
different strategy.

Nash equilibrium of a non-zero-sum game generalizes the VonNeumann-Morgenstern
notion of saddle point of a zero-sum game.

Consider the zero-sum game in section 1.1.1, where Player I chooses strategys1 to
maximize his rewardR(s1, s2), and Player II chooses strategys2 to minimizeR(s1, s2)
as cost. But his minimizing the costR is equivalent to Player II’s maximizing−R. We
may construct a 2-person non-zero-sum game with the two players’ rewardsR1 = R
andR2 = −R. When Player II employs strategys∗2, s∗1 maximizes Player I’s rewardR1

over all possible strategies for Player I. When Player I employs strategys∗1, s∗2 maxi-
mizes Player I’s rewardR2 over all possible strategies for Player II. Hence the pair of
strategies (s∗1, s

∗
2) is a Nash equilibrium of the non-zero-sum game, which turnsout to

incorporate saddle point of a zero-sum game. The reasoning is summarized in Table
1.1.2.
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Player I Player II optimal (s∗1, s
∗
2)

0-sum max
s1

R(s1, s2) min
s2

R(s1, s2) ”saddle”:

R(s1, s∗2) ≤ R(s∗1, s
∗
2),

R(s∗1, s
∗
2) ≤ R(s∗1, s2)

0-sum max
s1

R(s1, s2) max
s2

−R(s1, s2) R(s∗1, s
∗
2) ≥ R(s1, s∗2),

−R(s∗1, s
∗
2) ≥ −R(s∗1, s2)

non-0-sum max
s1

R1(s1, s2) max
s2

R2(s1, s2) ”equilibrium”:

R1(s∗1, s
∗
2) ≥ R1(s1, s∗2),

R2(s∗1, s
∗
2) ≥ R2(s∗1, s2)

Table 1.1.2: a saddle of a zero-sum game as a special case of anequilibrium of a
non-zero-sum game.

Through the most popular one, Nash equilibrium is not the only optimality criteria for
an N-player non-zero-sum game. Other optimality criteria include ”efficient” and ”in
the core”.

Definition 1.1.4 A set of strategies(s∗1, · · · , s
∗
N) is said to be efficient of the N-player

game, if for any set of strategies(s1, · · · , sN), there exists some Player i, such that his
rewards

Ri(s∗1, · · · , s
∗
N) ≥ Ri(s1, · · · , sN). (1.1.12)

The set(s∗1, · · · , s
∗
N) is said to be in the core, if for any index subset I⊂ {1, · · · ,N},

there exists some Player i, such that his rewards

Ri(s∗1, · · · , s
∗
N) ≥ Ri(s1, · · · , sN), (1.1.13)

where sj = s∗j , for all j ∈̄I.

Efficient strategies cannot be modified to improve every player’s situation. A set of
strategies is in the core, if coalition within any lot cannotimprove everyone in the lot
while strategies of players outside of this lot remain the same. Strategies in the core
are both Nash and efficient. Nash equilibrium and efficiency do not cover each other.
This dissertation will focus on Nash equilibrium.

1.1.3 Popular approaches to stochastic differential games

Stochastic differential games are a family of dynamic, continuous time versions of
games incorporating randomness in both the states and the rewards. States are random,
described by an adapted diffusion process whose dynamics are known. To play a game,
a player receives a running reward cumulated at some rate till the end of the game, and
a terminal reward granted at the end of the game. The rewards are related to both the
state process, and the controls at the choice of the players,as deterministic or random
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functions or functionals of them. A control represents a player’s action in attempt to in-
fluence his rewards. Assuming his rationality, a player should certainly act in the most
profitable way to his knowledge. Since the rewards can be random, they are usually
measured in expectation, or some other more advanced criteria, for example variance
as a measure of risk.

Depending on different settings, a game could never end, end at a finite determinis-
tic time, or end at a random time. When the game is terminated at a random time, the
random time is usually a stopping time, meaning up to any deterministic time, a player
is informative enough to tell if he is to quit the game or not. One case of interest is to
quit when the state process hits some boundary. The other case is letting a player de-
termine the time to quit the game, based on his information up-to-date about the state
process, about his own rewards, and even about other players’ actions. In the latter
case, a player is again assumed rational, seeking the best reward possible.

In a zero-sum game of timing, one player chooses a stopping time to maximize his
reward received from the other player, and the other player chooses another stopping
time to minimize the first player’s reward as cost to him. Sucha zero-sum game of
stopping is called a ”Dynkin game”. It is the two-player gameversion of the op-
timal stopping problem, in practice the optimal exercise ofan American contingent
claim. Dynkin games are connected to singular controls, in the sense that, for convex
cost functions, value function of the former games are derivatives of value functions
of the latter. This connection was first observed by Taksar (1985) [47], followed by
Fukushima and Taksar (2002) [25] in a Markovian setting by solving free-boundary
problems, and Karatzas and Wang (2001) [36] in a non-Markovian setting based on
weak compactness arguments.

In both zero-sum and non-zero-sum games, the existence and even choice of optimal
controls largely relies on, if not equivalent to, the achievablity of the maximum or max-
ima of the reward functions. One may prove such achievabilities in zero-sum games,
for example, in Beneš (1970) [1]. However, existence of an optimal control set that
maximizes the Hamiltonians usually enters a non-zero-sum game as an equivalent con-
dition, called Isaacs’ condition, or Nash condition, for example in Davis (1979) [12].

Due to the nature of the problem, there have been at least three major approaches
to solving stochastic differential games - partial differential equations, martingale tech-
niques, and backward stochastic differential equations. Non-zero-sum stochastic dif-
ferential games have not yet fallen out of these categories.

For Markovian rewards, which are functions of the current value of an underling dif-
fusion state process, partial differential equations become a handy tool. Over the past
thirty years, Bensoussan, Frehse and Friedman built a regularity theory of PDE’s to
study stochastic differential games. Among their extensive works, Bensoussan and
Friedman (1977) considered in [6] games of optimal stopping. The existence of op-
timal stopping times of such games is reduced to the study of regular solutions of
quasi-variational inequalities, assuming continuous andbounded running rewards and



1.1. FROM ZERO-SUM TO NON-ZERO-SUM GAMES 7

terminal rewards; Bensoussan and Frehse (2000) in [4] solved a non-zero-sum game of
optimal controls, which is terminated when the state process exits a bounded domain.
Their running rewards are quadratic forms of the controls. Fleming and Soner (1993)
[23] give lectures on controlled Markov diffusions.

Under some regularity conditions and with uniqueness of solution in some sense, the
HJB PDEs can be numerically implemented using the finite difference method. Duffie
(2006) [15] is a good manual of finite difference methods for financial computations.

The martingale approach to characterizing optimal controls dates back to 1970’s. The
idea is exactly the one to derive Verification Theorems and Hamilton-Jacobi-Bellman
equations: the expected reward is a supermartingale, and itis a martingale if and only
if the control is optimal. The martingale approach allows the rewards to be path-
dependant on the state process. Among others, there was a line of early works dealing
with path-dependant rewards developing from optimization, through zero-sum games,
and to non-zero-sum games, by Beneš (1970) [1] and (1971) [2], Duncan and Varaiya
(1971) [16], Davis and Varaiya (1973) [13] and Davis (1973) [11]. See Davis (1979)
[12] for a survey on the martingale method for optimal control problems.

To accommodate path-dependent rewards in games of stopping, Snell envelopes named
after J. L. Snell for his 1952 work [46], instead of stopping regions for Markovian re-
wards (c.f. Shiryayev (1979) [45]), are used to derive optimal stopping rules. Snell
envelope is the smallest supermartingale dominating the rewards, and is a martingale
if stopped at the optimal stopping time. It is optimal to stopwhen, for the first time,
terminal reward granted for early exercise meets the best expected reward over all pos-
sible stopping times. The martingale method also facilitates the study of zero-sum and
non-zero-sum games of control and stopping, and is particularly useful if the rewards
depend on the path of the state process. When there are terminal rewards only, Le-
peltier and Etourneau (1987) in [40] used martingale techniques to provide sufficient
conditions for the existence of optimal stopping times on processes that need not be
Markovian. Their general theory requires some order assumption and supermartingale
assumptions on the terminal reward. Karatzas and Zamfirescu(2008) in [38] took the
martingale approach to characterize, then construct saddle points for zero-sum games
of control and stopping. They also characterized the value processes by the semi-
martingale decompositions and proved a stochastic maximumprinciple for continuous,
bounded running reward that can be a functional of the diffusion state process.

The martingale approach is very intuitive, revealing the essence of the problems.

As a tool for stochastic control theory, backward stochastic differential equations (BS-
DEs for short) were first proposed by Bismut in the 1970’s. Pardoux and Peng (1990)
proved in [43] existence and uniqueness of the solution to a BSDE with uniformly Lip-
schitz growth. El Karoui, Peng and Quenez (1997) [20] is a survey on BSDEs and their
financial applications. Considerable attention has been devoted to studying the associ-
ation between BSDEs and stochastic differential games. Cvitanić and Karatzas (1996)
proved in [10] existence and uniqueness of the solution to the equation with double
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reflecting barriers, and associated their BSDE to a zero-sumDynkin game. Their work
generalized El Karoui, Kapoudjian, Pardoux, Peng and Quenez (1997) [19] on one-
dimensional BSDE with one reflecting boundary, which captures early stopping fea-
tures as that of American options. Hamadène and Lepeltier (2000) [29] and Hamadène
(2006) [30] added controls to the Dynkin game studied by Cvitanić and Karatzas (1996)
[10], the tool still being BSDE with double reflecting barriers. Markovian rewards of
games correspond to the equations in the Markovian framework. Hamadène studied
in [27] and [28] Nash equilibrium control with forward-backward SDE. In Hamadène,
Lepeltier and Peng (1997) [26], the growth rates of their forward-backward SDE are
linear in the value process and the volatility process, and polynomial in the state pro-
cess. Their state process is a diffusion satisfying an ”L2-dominance” condition. These
three authors solve a non-zero-sum game without stopping, based on existence result
of the multi-dimensional BSDE.

BSDE’s are after all as much of an analytical tool as probabilistic. The privilege to
use heavy analysis is an advantage of the BSDE approach, for it facilitates solving the
optimization problems under looser technical conditions.There have also been plenty
of works on numerical solutions to BSDE’s.

Readers interested in numerical methods for stochastic differential games are referred
to works by H.J. Kushner and P. Dupuis.

1.2 Martingale techniques

In the stochastic differential game Problem 2.1.1 to be formulated in Chapter 2, a rep-
resentativeith Player faces the optimization problem with expected reward

Jt(τ, u) := Eu[Rt(τ, u)|Ft], (1.2.1)

when all other Players’ strategies are given. To simplify notation, this is a typical
question of finding a stopping ruleτ∗ and controlu∗ to maximize the one-dimensional
expected reward (2.2.1) over all stopping rulesτ ∈ S (t,T) and all admissible controls
u ∈ U . The reward processR is defined as

Rt(τ, u) :=
∫ τ∧T

t
h(s,X, us)ds+ L(τ)1{τ<T} + ξ1{τ=T}, (1.2.2)

Throughout this section, notations likeJ, R, h, L, andξ are one-dimensional.

Classical martingale characterization of the optimization problem views optimal stop-
ping and optimal control separately.

For every fixed admissible controlu, denote

Q(t, u) = Eu[R0(τ∗, u)|Ft] = sup
τ∈St,ρ

Jt(τ, u) +
∫ t

0
h(s,X, us)ds. (1.2.3)
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It is optimal to stop the first time whenQ(·, u) meetsR0(·, u). The stopped supermartin-
galeQ(· ∧ τ, u) is aPu-supermartingale with respect to{Ft}0≤t≤ρ, and is a martingale
if and only if τ is optimal. Q(·, u) is called the Snell envelope ofR0(·, u). Optimal
stopping theory using Snell envelope does not require the reward being Markovian in
the state processX.

For every fixed stopping timeτ, denote

V(t, u) := sup
u∈U

Jt(τ, u) +
∫ t

0
h(s,X, us)ds

= sup
u∈U
E

u[Rt(τ, u)|Ft] +
∫ t

0
h(s,X, us)ds.

(1.2.4)

V(·, u) is aPu-supermartingale with respect to{Ft}0≤t≤ρ, for everyu, and is a martingale
if and only if u is optimal.

Once obtaining the supermartingale property ofV(·, u), with the help of Doob-Meyer
decomposition of super(sub)martingales, we can decompose

V(·, u) = V(0, u) + M(·, u) − A(·, u) (1.2.5)

as summation of aPu-martingaleM and decreasing process−A. A martingale represen-
tation theorem further representsM(·, u) =

∫ t

0
(Zu

s)′dBu
s as a stochastic integral integral

with respect to to thePu-standard Brownian motionBu. It turns out thatZu = Z is
irrelevant ofu. A(·, u) can be shown to satisfy

A(t, u) − A(t, v) = −
∫ t

0
(H(s,X,Zs, us) − H(s,X,Zs, vs))ds, 0≤ t ≤ τ, (1.2.6)

for any controlsu, v ∈ U . The function or functionalH is the Hamiltonian defined as

H(t,X, z, u) := zσ−1(t,X) f (t,X, u) + h(t,X, u). (1.2.7)

Derived from the martingale property of the optimal controlu∗, locally maximizing the
HamiltonianH equates to globally maximizing the expected reward. The latter is made
of much more random noise than the former. The existence of a control u∗ that maxi-
mizes the Hamiltonian is called ”Isaacs’ condition”. Necessity of ”Isaacs’ condition”
for maximizing the expected reward is called the ”stochastic maximum principle”.

For these martingale theorems to apply, most works so far assume boundedness of
the rewards as a technical assumption, though the general belief is that the bounded-
ness assumption can be relaxed. The arguments in the survey article Davis (1979) [12]
indeed proceed as well if the rewards have at most polynomialgrowth in the supremum
of the historical path of the state process.

Readers are referred to Karatzas and Shreve (1998) [34] for Snell envelopes of optimal
stopping problems, to Karatzas and Shreve (1988) [33] and Revuz and Yor (1999) [44]
for Brownian motion and continuous time martingales.
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1.2.1 Snell envelope

A typical optimal stopping problem looks for a stopping ruleτ∗ that attains supremum
in

Y(t) := sup
τ∈S (t,T)

E[Rτ|Ft], 0 ≤ t ≤ T. (1.2.8)

The terminal timeT is finite. The filtration{Ft}0≤t≤T satisfies the usual condition. The
process{Rt}0≤t≤T is interpreted as a player’s reward at every timet. The value process
Y is the best expected reward possible the player could get by choosing to stop between
current timet and terminal timeT. If assumingR is bounded from below and right-
continuous, thenY has an RCLL modification which shall still be denoted by the same
symbol. The processY is the smallest RCLL supermartingale dominatingR. To credit
Snell’s contribution to solving this optimal stopping problem, Y is called the Snell
envelope ofR. If further more assumingE[ sup

s≤t≤T
Rs|Ft] < ∞, the optimal stopping rule

is
τ∗ = inf{t ≤ s≤ T |Rs = Ys}, (1.2.9)

the first time reward processRmeets value processY from below.

See Appendix D, Karatzas and Shreve (1998) [34] for detailedexpositions of Snell
envelope.

1.2.2 Doob-Meyer decomposition

The sum of a martingale and predictable, increasing (decreasing) process with respect
to the same filtration is a supermartingale (submartingale). Whether the reverse claim
is true or not raises the question of supermartingale (submartingale) decomposition.

For discrete time martingale, the answer is simple, for the two summands have been
explicitly constructed.

Theorem 1.2.1 (Doob decomposition) Any submartingale Y= {Yn,Fn}n=0,1,··· can be
uniquely decomposed as

Yn = Mn + An, (1.2.10)

the summation of a martingale M= {Mn,Fn}n=0,1,··· and an predictable, increasing
sequence A= {An,Fn}n=0,1,···.

Proof. TakingA0 = 0, andAn+1 = An − Yn + E[Yn+1|Fn] =
n
∑

k=0
E([Yk+1|Fk] − Yk). �

In continuous time, there has not been any analogue construction of the increasing
(decreasing) process. A natural resort would be approximating continuous time mar-
tingales using the discrete time result. To show convergence of the approximating se-
quence of discrete time monotonic processes, additional assumptions are required. A
most commonly used condition is a right-continuous supermartingale (submartingale)
of classDL or classD .
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Definition 1.2.1 The collection of all stopping timesτ bounded between 0 and a fi-
nite positive number T (respectively, infinity) is denoted as S0,T (S0,∞). A right-
continuous process{Yt,Ft}t≥0 is said to be of classD , if the family{Yτ}τ∈S0,∞ is uni-
formly integrable; of classDL , if the family {Yτ}τ∈S0,T is uniformly integrable, for
every0 ≤ T ≤ ∞.

Theorem 1.2.2 (Doob-Meyer decomposition) Let a filtration{Ft}t≥0 be right-continuous
and such thatF0 contains allP-negligible sets inF . If a right-continuous submartin-
gale Y= {Yt,Ft}t≥0 is of classDL , then it admits the decomposition

Yt = Mt + At, t ≥ 0, (1.2.11)

as the summation of a right-continuous martingale M= {Mt,Ft}t≥0 and a predictable,
increasing process A= {At,Ft}t≥0. Under the condition of predictability of process A,
the decomposition is unique. Further, if Y is of classD , the M is a uniformly integrable
martingale and A is integrable.

Without the assumption of classDL , the decomposition is also valid, butM being
only a local martingale is the price to pay.

1.2.3 Martingale representation theorems

The Ito integral of an adapted, square-integrable process with respect to Brownian mo-
tion is a local martingale. Conversely, is a (local) martingale {M, {Ft}} a stochastic
integral of some adapted, square-integrable process with respect to a certain Brownian
motion? The answer is given by the martingale representation theorems.

In 1953, J. L. Doob answered yes. IfM is a d-dimensional continuous local mar-
tingale on the filtered probability space (Ω,F , P) with filtration {Ft}, then one can
construct, on a possibly extended (Ω̃, F̃ , P̃) with a possibly extended filtration{F̃t},
a d-dimensional Brownian motionW, and ad × d matrix Z of measurable, adapted,
square-integrable process, such thatP-a.s.M has the representation

Mt =

∫ t

0
ZsdWs, (1.2.12)

as the stochastic integral ofZ with respect to the Brownian motionW, which is not
prefixed. The Brownian motionW is constructed according to the local martingaleM.
Since the the original probability space (Ω,F , P) might not be enough to support the
Brownian motion required for the representation, an extension might be necessary.

Preferrably, we would like all martingales on the same filtered probability space be
stochastic integrals with respect to one single Brownian motion. This is true if the
(augmented) filtration is Brownian. IfM is ad-dimensional RCLL, square-integrable
martingale on the filtered probability space (Ω,F , P) with (augmented) filtration{Ft}

generated by a Brownian motionB, then there exists ad × d matrix Z of measurable,
adapted, square-integrable process, such thatP-a.s.M has the representation

Mt =

∫ t

0
ZsdBs. (1.2.13)
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The Brownian motionB is the same for allP-martingales on{Ft}. It is the given Brow-
nian motion that generate{Ft}.

In the setting of Chapter 2, we need to represent the martingale partM(·, u) of the value
processV(·, u) in (1.2.5) to solve the optimization problem.M(·, u) is aPu-martingale
with respect to{Ft}. It had better take up the integral form

Mt =

∫ t

0
Zu

sdBu
s, (1.2.14)

for somePu-standard Brownian motionBu. This has been confirmed with (Theorem
3.1, Fujisaki, Kallianpur and Kunita (1972) [24]). Their result is not covered by the
previous two representation theorems, because the Brownian motionBu is the prefixed
drifted P-B.M. and standardPu-B.M. defined in (3.1.10), and{Ft} is not necessarily
generated byBu due to randomness in the drift coefficient.

1.3 Backward stochastic differential equations

Backward stochastic differential equations were proposed for the first time in Bismut
(1973) [7] as means to solve stochastic optimal control problems. The two subjects
agree in terms of seeking adapted strategies to achieve a terminal goal. In the set-
ting of Chapter 3, the value process of a BSDE turns out to be the value process of a
control problem, the proof of which require boundedness of the rewards in most pre-
vious works. Terminal reward of the control problem corresponds to terminal value of
the equation, Hamiltonian corresponds to the driver, and early exercise rewards cor-
responds to reflecting boundaries. Once linked a backward equation, not only proba-
bilistic tools but also analytical techniques can help. This BSDE approach offers more
flexibility, though somewhat less intuitive.

We will focus on how different types of BSDE’s are connected to various optimal con-
trol and stopping problems, as summarized in tables (1.1) and (1.2) below.
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Table 1.1: correspondence between types of stochastic differential games and types of
BSDE’s.

Game BSDE

one person’s optimal control 1-dim, no reflection
zero-sum game of control 1-dim, no reflection
one person’s optimal stopping 1-dim, lower reflecting boundary
Dynkin game
(zero-sum game of stopping) 1-dim, double reflecting boundary
N-player non-zero-sum game of controlN-dim, no reflection

risk-sensitive control quadratic driver

Table 1.2: correspondence between parameters of stochastic differential games and
parameters of BSDE’s.

Game BSDE

number of rewards to optimize dimension
value process value process
Hamiltonian driver
maximum duration of game terminal time
terminal reward terminal value
early exercise reward reflecting boundary
regret from suboptimal exercise time the increasing process
Brownian noise from state process Brownian noise added to the equation
instantaneous volatility of value processvolatility process

1.3.1 Birth of BSDE

A control problem with expected reward

Jt(u, v) = Eu,v[
∫ T

t
h(s,X, us, vs)ds+ ξ|Ft] (1.3.1)

identifies with BSDE

Yu,v(t) = ξ +
∫ T

t
H(s,X,Zu,v(s), (u, v)(t,X,Zu,v(s))ds−

∫ T

t
Zu,v(s)dBs, (1.3.2)

in the sense that the two processesJ(u, v) andYu,v coincide. For the control problem,
h is an instantaneous reward rate, andξ is the fixed terminal reward at timeT. The
HamiltonianH is defined as

H(t,X, z, u, v) := zσ−1(t,X) f (t,X, u, v) + h(t,X, u, v). (1.3.3)

By starting from a simplified version which can be solved by martingale representation,
Pardoux and Peng (1990) [43] used Picard iteration to show existence of an adapted
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solution, and similar inequalities used in the iteration toshow uniqueness of such solu-
tions, to a backward equation of the general form

Y(t) = ξ +
∫ T

t
g(s,Y(s),Z(s))ds−

∫ T

t
Z(s)dBs, (1.3.4)

where the functiong is uniformly Lipschitz in theY andZ arguments. The two pa-
rametersg andξ in (1.3.4) are called ”terminal value” and ”driver” of the BSDE. The
solution consists of ”value process”Y and ”volatility process”Z.

Both existence and uniqueness can alternatively be proven at the same time by the
contraction method as in El Karoui, Peng and Quenez (1997) [20]. They first pick two
arbitrary adapted, square-integrable processesY0 andZ0 in the driverg to solve the
equation

Y1(t) = ξ +
∫ T

t
g(s,Y0(s),Z0(s))ds−

∫ T

t
Z1(s)dBs. (1.3.5)

for (Y1,Z1). As in Pardoux and Peng (1990) [43], the processZ1 comes from represen-
tation of the martingale

E

[

ξ +

∫ T

0
g(s,Y0(s),Z0(s))ds

∣

∣

∣

∣

∣

∣

Ft

]

= E

[

ξ +

∫ T

0
g(s,Y0(s),Z0(s))ds

]

+

∫ t

0
Z1(s)dBs.

(1.3.6)
The processY1 is defined as

Y1(t) =E

[

ξ +

∫ T

t
g(s,Y0(s),Z0(s))ds

∣

∣

∣

∣

∣

∣

Ft

]

=E

[

ξ +

∫ T

0
g(s,Y0(s),Z0(s))ds

∣

∣

∣

∣

∣

∣

Ft

]

−

∫ t

0
g(s,Y0(s),Z0(s))ds.

(1.3.7)

The contract method argues existence and uniqueness of solution to equation (1.3.4)
by proving the mapping from (Y0,Z0) to (Y1,Z1) is a contraction, thus having a unique
fixed point (Y,Z). The fixed point solves equation (1.3.4).

The contraction method is equivalent to Pardoux and Peng’s 1990 proof. Besides mea-
surabilities and integrabilities, a crucial technical assumption of the two proofs is the
driver g being Lipschitz in both value processy and volatility processz, uniformly in
time t.

Under those assumptions above, and in dimension one, Comparison Theorem (sec-
tion 2.2, El Karoui, Peng and Quenez (1997) [20]) states thata larger terminal value
and a larger driver will produce a larger value process of a BSDE. Conversely, that a
larger value process has to be produced by a larger terminal value and a larger driver
is called the Converse Comparison Theorem. Briand, Coquet,Hu, Mémin and Peng
(2000) [8] proved a Converse Comparison Theorem for one-dimensional BSDE with
Lipschitz driver. Comparison Theorems and the converse, when holding true, deter-
mines a necessary and sufficient condition for the optimal control(s).
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An optimization problem considers one controlu only and the other controlv dis-
appears in (1.3.1). An optimal controlu∗ is chosen among all admissible controls to
maximize

Jt(u) = Eu

[∫ T

t
h(s,X, us)ds+ ξ

∣

∣

∣

∣

∣

∣

Ft

]

. (1.3.8)

If the rewardsh andξ are bounded, the value processYu of BSDE

Yu(t) = ξ +
∫ T

t
H(s,X,Zu(s), u(t,X,Zu(s))ds−

∫ T

t
Zu(s)dBs (1.3.9)

can be shown to equalJt(u) in (1.3.8), with HamiltonianH defined as

H(t,X, z, u) := zσ−1(t,X) f (t,X, u) + h(t,X, u). (1.3.10)

When technical conditions are satisfied, maximizing HamiltonianH is equivalent to
maximizing value processYu, which equals expected rewardJ(u). Hence a controlu∗

is optimal if and only ifu∗ maximizesH(t, x, z, u) among all admissible controls. Beneš
(1970) [1] proved achievablity of the Hamiltonian by a measurableu∗.

In a zero-sum game with expected rewards (1.3.1), one playerchooses controlu to
maximizeJ(u, v), and the other player chooses controlv to minimizeJ(u, v). A saddle
point is a pair of controls (u∗, v∗) such that

J(u, v∗) ≤ J(u∗, v∗) ≤ J(u∗, v). (1.3.11)

If existing, the saddle (u∗, v∗) attains superema and infima, and identifies sup inf and
inf sup in

sup
u

inf
v

J(u, v) = inf
v

sup
u

J(u, v). (1.3.12)

With bounded rewards, if a control pair (u∗, v∗) satisfy

H(t, x, z, u, v∗) ≤ H(t, x, z, u∗, v∗) ≤ H(t, x, z, u∗, v), (1.3.13)

then (u∗, v∗) is a saddle point of the zero-sum game. Existence of controls that maxi-
mize or minimize the Hamiltonians in a way like (1.3.13) is called ”Isaacs’ condition”.
Necessity of Isaacs’ condition is called the ” Stochastic Maximum Principle”. Compar-
ison Theorem of BSDE’s is used to derive sufficiency of Isaacs’ condition, and converse
Comparison Theorem for the maximum principle.

A case in optimal control that receives more special treatments is the Markovian case.
In the Markovian framework, where the state processX is the solution to a forward
SDE

Xt = X0 +

∫ t

0
f (s,Xs, us)ds+

∫ t

0
σ(s,Xs)dBu

s, 0≤ t ≤ T, (1.3.14)

and where rewards are functions of the state processX as in

Jt(u, v) = Eu,v

[
∫ T

t
h(s,Xs, us, vs)ds+ ξ

∣

∣

∣

∣

∣

∣

Ft

]

, (1.3.15)
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expected rewardJt(u, v) is a function of the timet and the current value of the state
processXt = x.

Corresponding to Markovian setting of a control problem, there is the forward-backward
system of stochastic differential equations (FBSDE)











Xt,x(s) = x, 0 ≤ s≤ t;

dXt,x(s) = σ(s,Xt,x(s))′dBs, t < s≤ T,
(1.3.16)

and

Yt,x(s) = ξ(Xt,x(T)) +
∫ T

s
g(r,Xt,x(r),Yt,x(r),Zt,x(r))dr −

∫ T

s
Zt,x(r)dBr, t ≤ s≤ T.

(1.3.17)
As an application of Ito’s formula, if a functiony solves the PDE

∂ty(t, x) +A y(t, x) + g(t, x, y(t, x), σ′(t, x)∂xy(t, x)) = 0;

y(T, x) = ξ(x),
(1.3.18)

whereA is the infinitesimal generator

At,x =
∑

i, j

1
2

(σσ′)i j (t, x)∂2
xi x j
+

∑

i

fi(t, x)∂xi , (1.3.19)

then
(Yt,x
· ,Z

t,x
· ) = (y(·,Xt,x

· ), σ′(t,Xt,x
· )∂xy(·,Xt,x

· )) (1.3.20)

solves the forward-backward system (1.3.16) and (1.3.17).

PDE (1.3.18) is the renowned Feynman-Kac formula that linksPDE’s to probability.

1.3.2 The role of reflecting boundaries

An optimal stopping problem looks for a stopping time to maximize the expected re-
ward

Jt(τ) = E

[∫ τ

t
h(s,X)ds+ L(τ)1{τ<T} + ξ1{τ=T}

∣

∣

∣

∣

∣

Ft

]

. (1.3.21)

In addition to running reward cumulated at rateh, if a player sticks to the end of the
game, he receives a terminal rewardξ; if he decides to quit at any earlier stopping time
τ, then terminal rewardξ is replaced by an early exercise rewardL related to timeτ of
quitting.

If the early exercise rewardL is progressively measurable and continuous, and as time
is up if L(T−) is not above terminal rewardξ, the solution to the BSDE



































Y(t) = ξ +
∫ T

t
h(s)ds−

∫ T

t
Z(s)dBs+ K(T) − K(t);

Y(t) ≥ L(t), 0 ≤ t ≤ T,
∫ T

0
(Y(t) − L(t))dK(t) = 0

(1.3.22)
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provides the value process of the optimal stopping problem (1.3.21) and its optimal
stopping rule. That is,

Y(t) = sup
τ∈St

E

[∫ τ

t
h(s)ds+ L(τ)1{τ<T} + ξ1{τ=T}

∣

∣

∣

∣

∣

Ft

]

. (1.3.23)

Since a player can always quit immediately at timet and leave with an early exercise re-
wardL(t), the maximum reward he could get never falls belowL. The optimal stopping
rule can be shown as

τ∗ = inf {t ≤ s≤ T : Y(s) ≤ L(t)} ∧ T, (1.3.24)

the first time when early exercise reward meets the best reward possible from below.
Intuitively, the processK is interpreted as the cumulative profit missed for sticking to
the game after the optimal time to quit, hence being increasing in timet. When play-
ing the game before the optimal stopping time whenY meetsL, there is no regret, so
K is flat. If the player is asleep at the optimal stopping time, he suffers from earning
less profit than could be, soK increase accordingly. Seeing from the equation (1.3.22),
whenever the value processY is about to drop belowL, the increasing processK kicks
Y up with a minimal strength.

The processL in (1.3.22) is called a ”reflecting boundary”, ”reflecting barrier”, or
simply ”obstacle”. Since the value process in the optimization problem can never be
smaller than the early exercise rewardL, L is referred to as a ”lower reflecting bound-
ary”. A reflecting boundary is an additional term in BSDE’s toaccommodate an early
exercise privilege in optimization problems. A BSDE with a reflecting boundary or
reflecting boundaries is said to be reflected.

A general form of equation (1.3.22), the reflected BSDE


































Y(t) = ξ +
∫ T

t
g(s,Y(s),Z(s))ds−

∫ T

t
Z(s)dBs+ K(T) − K(t);

Y(t) ≥ L(t), 0 ≤ t ≤ T,
∫ T

0
(Y(t) − L(t))dK(t) = 0.

(1.3.25)

has been solved by El Karoui, Kapoudjian, Pardoux, Peng and Quenez (1997) [19],
in dimension one. With Lipschitz driverg, the solutionY to the equation (1.3.25) is
connected to the optimal stopping problem as

Y(t) = sup
τ∈St

E

[∫ τ

t
g(s,Y(s),Z(s))ds+ L(τ)1{τ<T} + ξ1{τ=T}

∣

∣

∣

∣

∣

Ft

]

. (1.3.26)

The optimal stopping ruleτ∗ is the first hitting time of the lower reflecting boundary.

τ∗ = inf {t ≤ s≤ T : Y(s) ≤ L(t)} ∧ T. (1.3.27)

El Karoui, Kapoudjian, Pardoux, Peng and Quenez (1997) [19]demonstrated existence
of solution to equation (1.3.25) with two methods - contraction and penalization.



18 CHAPTER 1. BIBLIOGRAPHICAL NOTES

As for equation (1.3.4) without reflection, the contractionmethod views solution (Y,Z)
to equation(1.3.25) as a fixed point of the contraction mapping from two arbitrary
adapted, square-integrable processesY0 andZ0 to (Y1,Z1) defined via



































Y1(t) = ξ +
∫ T

t
g(s,Y0(s),Z0(s))ds−

∫ T

t
Z1(s)dBs+ K1(T) − K1(t);

Y1(t) ≥ L(t), 0≤ t ≤ T,
∫ T

0
(Y1(t) − L(t))dK1(t) = 0.

(1.3.28)

With the help of the theory on optimal stopping reviewed in section 1.2.1, the condi-
tional expectation

E

[
∫ τ∗

0
g(s,Y0(s),Z0(s))ds+ L(τ∗)1{τ∗<T} + ξ1{τ∗=T}

∣

∣

∣

∣

∣

∣

Ft

]

(1.3.29)

with optimal stopping timeτ∗ from (1.3.27) is a supermartingale, hence admitting the
Doob-Meyer decomposition of continuous time martingales

E

[∫ τ∗

0
g(s,Y0(s),Z0(s))ds+ L(τ∗)1{τ∗<T} + ξ1{τ∗=T}

∣

∣

∣

∣

∣

∣

Ft

]

=E

[∫ τ∗

0
g(s,Y0(s),Z0(s))ds+ L(τ∗)1{τ∗<T} + ξ1{τ∗=T}

]

+

∫ t

0
Z1(s)dBs− K1(t).

(1.3.30)

The termK1 is the increasing process from the decomposition, andZ1 comes from
representation of the martingale part. Define a processY1 by

Y1(t) = E

[
∫ τ∗

t
g(s,Y0(s),Z0(s))ds+ L(τ∗)1{τ∗<T} + ξ1{τ∗=T}

∣

∣

∣

∣

∣

∣

Ft

]

. (1.3.31)

The triple (Y1,Z1,K1) satisfies (1.3.28).

The penalization method views solution (Y,Z) to equation(1.3.25) as strong limit of
solutions{(Yn,Zn)}∞n=1 to the penalized equations

Yn(t) = ξ+
∫ T

t
g(s,Yn(s),Zn(s))ds−

∫ T

t
Zn(s)dBs+n

∫ T

t
(Yn(s)−Ln(s))−ds. (1.3.32)

BSDE (1.3.32) is the non-reflected one solved by Pardoux and Peng (1990) [43]. Proof
of convergence mainly relies on Comparison Theorem to guarantee that the sequence
{Yn} is increasing hence having a pointwise limit. Lipschitz condition on the driverg
is also required for uniformL2 boundedness of{Yn}.

In dimension one, El Karoui, Kapoudjian, Pardoux, Peng and Quenez (1997) [19] is
able to prove the Comparison Theorem for the reflected equation.
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With a reflecting boundary, Feynman-Kac formula (1.3.18) for the forward-backward
Markovian system (1.3.16) and (1.3.17) is modified to be a variational inequality. If a
functiony solves the variational inequality

max{L(t, x) − y(t, x), ∂ty(t, x) +A y(t, x) + g(t, x, y(t, x), σ′(t, x)∂xy(t, x))} = 0;

y(T, x) = ξ(x),
(1.3.33)

whereA is the infinitesimal generator in (1.3.19), then (Yt,x
· ,Z

t,x
· ) as in (1.3.20) satisfies

the system of forward equation (1.3.16) and backward equation

Yt,x(s) =ξ(Xt,x(T)) +
∫ T

s
g(r,Xt,x(r),Yt,x(r),Zt,x(r))dr −

∫ T

s
Zt,x(r)dBr

+ Kt,x(T) − Kt,x(s), t ≤ s≤ T.

(1.3.34)

Rigorous discussion of the variational inequality can be found in section 8, El Karoui,
Kapoudjian, Pardoux, Peng and Quenez (1997) [19].

A Dynkin game is a zero-sum game of stopping, initiated by Dynkin and Yushkevich
(1968) [17]. Consider a Dynkin game with payoff

Rt(τ, ρ) =
∫ τ∧ρ

t
h(s,X)ds+ L(τ)1{τ<T,τ≤ρ} + U(ρ)1{ρ≤τ} + ξ1{τ∧ρ=T}. (1.3.35)

Player I chooses stopping timeτ at which he quits the game. Player II chooses stopping
timeρ. Soon as either player quits, the game is ended. The payoffR(τ, ρ) is the amount
that Player II pays Player I at the end of the game. If Player I whistles to end the game
at timeτ before Player II does, he receives amountL(τ) + ξ from Player II. If Player
II quits the game first, he pays Player I amountU(ρ) + ξ. The random quantityR(τ, ρ)
is reward for Player I and cost to Player II, which should therefor be maximized by
Player I and minimized by Player II. To average over all scenarios, optimize instead
the expected payoff

Jt(τ, ρ) = E[
∫ τ∧ρ

t
h(s,X)ds+ L(τ)1{τ<T,τ≤ρ} + U(ρ)1{ρ≤τ} + ξ1{τ∧ρ=T}|Ft]. (1.3.36)

Saddle point of this Dynkin game is a pair of stopping times (τ∗, ρ∗), such that

J(τ, ρ∗) ≤ J(τ∗, ρ∗) ≤ J(τ∗, ρ). (1.3.37)

The saddle (τ∗, ρ∗) attains superema and infima, and identifies lower value sup inf and
upper value inf sup in

V := V = sup
τ

inf
ρ

J(τ, ρ) = inf
ρ

sup
τ

J(τ, ρ) = V̄. (1.3.38)

In case Player I chooses to stop immediately at current timet, he receives payoff L(t)
from Player II. In case Player II chooses to stop immediatelyat current timet, he pays
payoff U(t) to Player I. When existing, valueV of the game as Player I’s maximum



20 CHAPTER 1. BIBLIOGRAPHICAL NOTES

reward and Player II’s minimum cost is always aboveL and belowU. For this Dynkin
game, it suffices to consider only early exercise rewardsL ≤ U.

When early exercise rewardsL andU are continuous, the value processY of the dou-
blely reflected BSDE



































Y(t) = ξ +
∫ T

t
h(s,X)ds−

∫ T

t
Z(s)dBs+ K+(T) − K+(t) − (K−(T) − K−(t));

L(t) ≤ Y(t) ≤ U(t), 0 ≤ t ≤ T,
∫ T

0
(Y(t) − L(t))dK(t) =

∫ T

0
(U(t) − Y(t))dK(t) = 0

(1.3.39)
provides the value processV of Dynkin game with expected payoff (1.3.36). The in-
creasing processK+ is the minimal force that maintains value processY above lower
reflecting boundaryL. K+ is an additional term for early exercise privilege at timeτ
by Player I, to maximize his reward. For early exercise privilege at timeρ by Player II
to minimize his cost, a minimal cumulative forceK−, which is an increasing process,
pushes value processY downwards whenever it hits upper reflecting boundaryU from
below.

The connection between Dynkin games and doublely reflected BSDE’s was explored in
Cvitanic and Karatzas (1996) [10]. They proved existence and uniqueness of solution
to the equation



































Y(t) = ξ +
∫ T

t
g(s,Y(s),Z(s))ds−

∫ T

t
Z(s)dBs+ K+(T) − K+(t) −− (T) − K−(t));

L(t) ≤ Y(t) ≤ U(t), 0≤ t ≤ T,
∫ T

0
(Y(t) − L(t))dK(t) =

∫ T

0
(U(t) − Y(t))dK(t) = 0.

(1.3.40)
with Lipschitz driverg. The authors demonstrate uniqueness of the solution with both
contraction and penalization methods.

1.3.3 Growth rates beyond Lipschitz

Risk-sensitive controls were initiated by Whittle, Bensoussan and coworkers, among
others. Receiving a controlled random rewardR, a risk-sensitive player takes not only
the expectation but also the variance of his reward into consideration. El Karoui and
Hamadène (2003) in [18] link risk-sensitive control problems to BSDE’s with an addi-
tional term quadratic in the volatility process.

Consider a general risk preference coefficient θ. For the Player with reward process
Rt(u) controlled byu, the quantity

E
u[Rt(u)|Ft] +

θ

2
Varu[Rt(u)|Ft] (1.3.41)
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is about equal to
1
θ

lnEu[exp{θRt(u)}|Ft], (1.3.42)

when absolute value|θ| is small. Ifθ > 0 (< 0), a larger variance contributes to a larger
(small) expected reward, hence a higher risk is more (less) preferable to the Player.
The Player is called risk-prone ifθ > 0, and risk-averse ifθ < 0. If θ = 0, the variance
term disappear from the expected reward, then the Player is said to be risk-neutral. So,
instead of maximizing the expected reward, our risk-sensitive Player maximizes his
expected exponential reward

Jt(u) = Eu[exp{θRt(u)}|Ft]. (1.3.43)

Let Rt(u) take a generic form
∫ T

t
h(s,X, us)ds+ ξ, whereX is the underlying state

process. LetHθ be Hamiltonian as

Hθ(t, x, z, u) := zσ−1(t, x) f (t, x, u) + θh(t, x, u). (1.3.44)

Solution (Yu,Zu) to the quadratic BSDE

Yu(t) = θξ +
∫ T

t
(Hθ(s, x,Zu(s), u(s, x,Zu(s)) +

1
2

Zu(s)2)ds−
∫ T

t
Zu(s)dBs (1.3.45)

is connected to the risk-sensitive control problem by the identity

eYu
= Jt(u). (1.3.46)

We notice from expression (1.3.43) thatθ is equivalent to a rescaling multiplier of the
rewardRt, it suffices to to solve BSDE (1.3.45) for the caseθ = 1.

More generally, if the value processes (y, z) solve

y(t) = eξ +
∫ T

t
y(s)(g(s, logy(s), z(s)/y(s))ds−

∫ T

t
z(s)dBs, (1.3.47)

then by Itô’s formula, (Y,Z) defined via











Y(t) = logy(t);

Z(t) = z(t)/y(t)
(1.3.48)

solve BSDE

Y(t) = θξ +
∫ T

t
(g(s,Y(s),Z(s)) +

1
2

Z(s)2)ds−
∫ T

t
Z(s)dBs. (1.3.49)

Equation (1.3.47), thus equation (1.3.49), has a solution when the driverg and the ter-
minal valueξ are bounded. Existence of solution to (1.3.47) is due to Pardoux and Peng
(1990) [43]. Since the transformation betweenY andy in (1.3.48) is monotonic, when
Comparison Theorem is needed for equations with quadratic growth, one can compare
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solutions to equations of the form (1.3.47), then conclude by transforming back to solu-
tions to (1.3.49). Again, comparison can be applied assuming thatg andξ are bounded.

Above is a brief illustration of connections between risk-sensitive controls and quadratic
BSDE’s. A zero-sum game corresponds to a one-dimensional BSDE, and a non-zero-
sum game a multidimensional equation. Rigorous formulation and technical treatments
to the risk-sensitive control using quadratic BSDEs can be found in El Karoui and
Hamadène (2003) [18].

Kobylansky (2000) [39] considers one-dimensional BSDE’s whose drives have quadratic
growth rate, not necessarily a quadratic term, in the volatility process. Her basic
idea was the exponential transformation (1.3.48), which requires some condition like
bounded parameters. Up to an exponential change, she approximated a quadratic driver
with a monotonic sequence of Lipschitz drivers. Solution tothe quadratic BSDE turns
out to be limit of a monotonic sequence of solutions. It was Comparison Theorem that
guarantees monotonicity of solutions to the sequence of approximating equations.

Even for controls indifferent to risk, since the driver of a BSDE corresponds to the
Hamiltonian of a control problem, more general growth ratesof the driver allows for
growth rates of the game rewards.

1.3.4 Difference in several dimensions

It would be tempting to extend all results on one dimensionalBSDE’s to multi-dimensions,
for example Comparisons, reflections, and higher growth rates, one reason being the
correspondence between multidimensional BSDE’s and non-zero-sum games.

Consider anN-Plyer non-zero-sum stochastic differential game of control. Each player,
indexed byi, chooses a controlui . Playeri receives a rewardRi(u1, · · · , uN) related to
all theN Players’ controls. The Players’ rewards have the form

Ri
t(u1, u2, · · · , uN) =

∫ T

t
hi(s,X, u1, u2, · · · , uN)ds+ ξi |Ft], 0 ≤ t ≤ T, i = 1, · · · ,N.

(1.3.50)
For Playeri, he receives a cumulative reward at ratehi and terminal rewardξi . Every
Playeri aims at optimizing his expected rewardJi , defined as

J1(u1, u2, · · · , uN) = Eu1,u2,··· ,uN [R1(u1, u2, · · · , uN)|Ft];

J2(u1, u2, · · · , uN) = Eu1,u2,··· ,uN [R2(u1, u2, · · · , uN)|Ft];

...

JN(u1, u2, · · · , uN) = Eu1,u2,··· ,uN [RN(u1, u2, · · · , uN)|Ft].

(1.3.51)

Define HamiltonianH = (H1,H2, · · · ,HN) as

Hi(t,X, zi , u1, u2, · · · , uN) :=ziσ
−1(t,X) f (t,X, u1, u2, · · · , uN)

+ hi(t,X, u1, u2, · · · , uN), i = 1, · · · ,N.
(1.3.52)
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If the N-dimensional processes

Yu1,u2,··· ,uN = (Yu1,u2,··· ,uN

1 , · · · ,Yu1,u2,··· ,uN
N ), (1.3.53)

and
Zu1,u2,··· ,uN = (Zu1,u2,··· ,uN

1 , · · · ,Zu1,u2,··· ,uN
N ) (1.3.54)

solve theN-dimensional BSDE


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
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
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


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









Yu1,u2,··· ,uN

1 (t) =ξ1 +

∫ T

t
H1(s,X,Zu1,u2,··· ,uN

1 (s), (u1, u2, · · · , uN)(t,X,Zu1,u2,··· ,uN(s))ds

−

∫ T

t
Zu1,u2,··· ,uN(s)1dBs;

Yu1,u2,··· ,uN

2 (t) =ξ2 +

∫ T

t
H2(s,X,Zu1,u2,··· ,uN

2 (s), (u1, u2, · · · , uN)(t,X,Zu1,u2,··· ,uN(s))ds

−

∫ T

t
Zu1,u2,··· ,uN(s)2dBs;

...

Yu1,u2,··· ,uN
N (t) =ξN +

∫ T

t
HN(s,X,Zu1,u2,··· ,uN

N (s), (u1, u2, · · · , uN)(t,X,Zu1,u2,··· ,uN(s))ds

−

∫ T

t
Zu1,u2,··· ,uN(s)NdBs,

(1.3.55)
then the value processYu1,u2,··· ,uN of the BSDE provides the value processJ(u1, u2, · · · , uN)
of the non-zero-sum game.

A multi-dimensional BSDE of the general form
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


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
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







Y1(t) =ξ1 +

∫ T

t
g1(s,X,Y(s),Z(s))ds−

∫ T

t
Z(s)1dBs;

Y2(t) =ξ2 +

∫ T

t
g2(s,X,Y(s),Z(s))ds−

∫ T

t
Z(s)2dBs;

...

YN(t) =ξN +

∫ T

t
gN(s,X,Y(s),Z(s))ds−

∫ T

t
Z(s)NdBs

(1.3.56)

is thus of interest. The case of Lipschitz driverg = (g1, · · · , gN) has been covered in
Pardoux and Peng (1990) [43]. One might ask for extending to drivers of higher growth
rate, like Kobylanski’s 2000 work [39] in dimension one. We recall that Kobylanski
concluded convergence of the approximating sequence by showing its monotonicity via
Comparison Theorem. But in several dimensions, Lipschitz growth is far from enough
for the Comparison Theorem to hold. An equivalent conditionto apply the Comparison
Theorem is provided by Hu and Peng (2006) [31].
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Hamadène, Lepeltier and Peng (1997) [26] worked on the Markovian case, assum-
ing that the driverg(t, x, y, z) is a continuous function, with growth rate polynomial in
x, and linear iny andz. They also approximated the driver with Lipschitz drivers,first
deriving a weakly convergent subsequence of solutions to the approximating equations
by weak compactness, then arguing that the weak limit is in fact strong under an ”L2-
dominance” assumption. TheirL2-dominance” assumption is not necessary and can be
removed.

In order to modify a non-zero-sum game with rewards (1.3.50)to incorporate optimal
stopping features, reflections have to be added to theN-dimensional (1.3.56). When a
reflected BSDE had only one dimension, El Karoui, Kapoudjian, Pardoux, Peng and
Quenez (1997) [19] provided two methods - contraction and penalization. The pe-
nalization method does not help with solving multi-dimensional equations, again due
to the lack of Comparison Theorem. The contraction method requires at most Lips-
chitz growth of the drivers. In Chapter 3, we shall explore the connections between
non-zero-sum games of control with optimal stopping features and multi-dimensional
BSDEs with reflection. Existence and uniqueness of solutions to such equations will
be shown for Lipschitz drivers. In the Markovian framework,we shall prove existence
of solutions to the equations with growth rates linear in thevalue process and in the
volatility process, and polynomial in the historical maximum of state process.



Chapter 2

Martingale Interpretation

Chapter 3 of the dissertation is adapted from Karatzas and Li(2009) [32]. In that piece
of work, we solved a non-zero-sum game of control and stopping, by identifying value
process of the game with solution to a multi-dimensional reflected backward stochas-
tic differential equations (BSDE). There, we prove existence of equilibrium strategy,
assuming Isaacs’ condition. The main tools are analytical tricks to prove existence of
solution to the BSDE, and Comparison Theorem to prove optimality of controls from
Isaacs’ condition. The privilege to use heavy analysis is anadvantage of the BSDE
approach, for it is easier to solve the optimization problems under looser technical con-
ditions. But our concern is, that too much heavy analysis in our BSDE chapter might
disguise intuitions. To remind ourselves of the nature of the problem we solved, this
chapter presents an equivalent martingale characterization of Nash equilibrium point of
the non-zero-sum game in question. Starting off from this martingale characterization,
stochastic maximum principle becomes a handy proposition.

Without controls, the non-zero-sum game of stopping was solved by Bensoussan and
Friedman in as early as 1977, using variational inequalities. Without stopping, a mar-
tingale approach to the non-zero-sum game of control can be found in Davis (1979)
[12], whose treatment will help us prove sufficiency of Isaacs’ condition for the exis-
tence of equilibrium controls. This chapter is partly also afollow-up of Karatzas and
Zamfirescu (2008) [38], which gave martingale characterization of saddle point of a
zero-sum game where one player controls and the other stops.For the existence of a
saddle point, the lower value and upper value of the game haveto equate each other.
Karatzas and Zamfirescu (2008) [38] argued the coincidence of several stopping rules.
For the existence of an equilibrium, we no longer need to balance between sup inf and
inf sup, whereas the difficulty switches to maximizing more that one expected rewards
with the same set of strategies. We will take the way Karatzasand Sudderth (2006)
[35] passes from a game where each player’s reward terminated by himself to a game
of interactive stopping. But to accommodate path-dependant rewards, Snell envelopes
named after Snell (1952) [46], instead of stopping regions for Markovian rewards (c.f.
Shiryayev (1979) [45]), was used to derive optimal stoppingrules.

25
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2.1 Mathematical layout

The rigorous model starts with ad-dimensional Brownian motionB(·) with respect to
its generated filtration{Ft}0≤t≤T on the canonical probability space (Ω,F , P), in which
Ω = Cd[0,T] is the set of all continuousd-dimensional function on a finite determin-
istic time horizon [0,T], F = B

(

Cd[0,T]
)

is the Borel sigma algebra, andP is the
Wiener measure.

For everyt ∈ [0,T], define a mappingφt : C[0,T] → [0,T] by φt(y)(s) = y(s∧ t),
which truncates the functiony ∈ C[0,T]. For anyy0 ∈ C[0,T], the pre-imageφ−1

t (y0)
collects all functions inC[0,T] which are identical toy0 up to timet. A stopping rule
is a mappingτ : C[0,T] → [0,T], such that

{y ∈ C[0,T] : τ(y) ≤ t} ∈ φ−1
t (B (C[0,T])) . (2.1.1)

The set of all stopping rules ranging betweent1 andt2 is denoted byS (t1, t2).

The state processX(·) solves the stochastic functional equation

X(t) = X(0)+
∫ t

0
σ(s,X)dBs, 0 ≤ t ≤ T, (2.1.2)

where the volatility matrixσ : [0,T] ×Ω→ Rd × Rd, (t, ω) 7→ σ(t, ω), is a predictable
process.

Assumption 2.1.1 (1) The volatility matrixσ(t, ω) is nonsingular for every(t, ω) ∈
[0,T] ×Ω;
(2) there exists a positive constant A such that

|σi j (t, ω) − σi j (t, ω̄)| ≤ A sup
0≤s≤t
|ω(s) − ω̄(s)|, (2.1.3)

for all 1 ≤ i, j ≤ d, for all t ∈ [0,T],ω, ω̄ ∈ Ω.

Under Assumption 2.1.1 (2), for every initial valueX(0) ∈ Rd, there exists a pathwise
unique strong solution to equation (3.1.2) (Theorem 14.6, Elliott (1982) [21]).

The control vectoru = (u1, · · · , uN) take values in some given separable product met-
ric spacesA = (A1,×,AN). We shall assume thatA1,×,AN are countable unions of
nonempty, compact subsets, and are endowed with theσ-algebrasA1,×,AN of their re-
spective Borel subsets. In this chapter, we use the setU = U1×· · ·×UN of closed loop
control vectors in the form ofut = µ(t, ω) that is anN-dimensional non-anticipative

functional of the state processX(·), for 0 ≤ t ≤ T, whereµ = (µ1 × · · · × µN) :
[0,T] ×Ω→ A is a deterministic measurable mapping.

We consider the predictable mapping

f : [0,T] ×Ω × A→ Rd,

(t, ω, µ(t, ω)) 7→ f (t, ω, µ(t, ω)),
(2.1.4)

satisfying:
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Assumption 2.1.1 (continued)
(3) There exists a positive constant A such that

∣

∣

∣

∣

σ−1(t, ω) f (t, ω, µ(t, ω))
∣

∣

∣

∣

≤ A, (2.1.5)

for all 0 ≤ t ≤ T, ω ∈ Ω, and all theA-valued representative elementsµ(t, ω) of the
control spaceU .

For generic control vectorsut = µ(t, ω), definePu, a probability measure equivalent to
P, via the Radon-Nykodim derivative

dPu

dP

∣

∣

∣

∣

∣

Ft = exp

{
∫ t

0
σ−1(s,X) f (s,X, us)dBs−

1
2

∫ t

0
|σ−1(s,X) f (s,X, us)|

2ds

}

.

(2.1.6)
Then by Girsanov Theorem,

B
u
t := Bt −

∫ t

0
σ−1(s,X) f (s,X, us)ds, 0 ≤ t ≤ T, (2.1.7)

is a Pu-Brownian Motion with respect to the filtration{Ft}0≤t≤T . In the probability
space (Ω,F , P) and with respect to the filtration{Ft}0≤t≤T , the pair (X, Bu) is a weak
solution to the forward stochastic functional equation

Xt = X0 +

∫ t

0
f (s,X, us)ds+

∫ t

0
σ(s,X)dB

u
s, 0≤ t ≤ T. (2.1.8)

In the three subsequent sections of this chapter, we shall study, in a sequel, optimization
problems with the following rewards.

Problem 2.1.1 (N = 1, one player’s optimization)

Rt(τ, u) :=
∫ τ∧ρ

t
h(s,X, us)ds+ L(τ)1{τ<ρ} + η1{τ=ρ}. (2.1.9)

In Problem 2.1.1,ut = ut = µ(t, ω) is a control inU = U1 =: U , ρ is a stopping rule
in S , andτ is a stopping time inS (t, ρ) for t ≤ ρ. Both the controlu and the stopping
rule τ is at the player’s choice. The cumulative reward rateh : [0,T] × Ω × A → R,
(t, ω, µ(t, ω)) 7→ h(t, ω, µ(t, ω)), is a predictable process int, non-anticipative functional
in X(·), and measurable function inµ(t, ω). The early exercise rewardL : [0,T] ×Ω→
R, (t, ω) 7→ L(t, ω) =: L(t), is a{Ft}0≤t≤T -adapted process. The terminal rewardη is a
real-valuedFρ-measurable random variable. The rewardsh, L andη are a.e. bounded
for all ω ∈ Ω, 0≤ t ≤ T, and all admissible controlsut = µ(t, ω).

Problem 2.1.2 (N = 2, two-player game)

R1
t (τ, ρ, u, v) :=

∫ τ∧ρ

t
h1(s,X, us, vs)ds+ L1(τ)1{τ<ρ} + U1(ρ)1{ρ≤τ<T} + ξ11{τ∧ρ=T};

R2
t (τ, ρ, u, v) :=

∫ τ∧ρ

t
h2(s,X, us, vs)ds+ L2(ρ)1{ρ<τ} + U2(τ)1{τ≤ρ<T} + ξ21{τ∧ρ=T}.

(2.1.10)
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In Problem 2.1.2, (ut, vt) = (µ(t, ω), υ(t, ω)) is a pair of controls inU = U1 × U2 =:
U × V , andτ andρ are stopping rules inS (t,T). The controlu and the stopping
rule τ is at the choice of Player I. The controlv and the stopping ruleρ is at the
choice of Player II. Player I receives rewardR1

t (τ, ρ, u, v), and Player II receives re-
wardR2

t (τ, ρ, u, v). The cumulative reward ratesh1 andh2 : [0,T] ×Ω ×A1 ×A2→ R,
(t, ω, µ(t, ω), υ(t, ω)) 7→ hi(t, ω, µ(t, ω), υ(t, ω)), i = 1, 2, are predictable processes in
t, non-anticipative functionals inX(·), and measurable functions inµ(t, ω) andυ(t, ω).
The early exercise rewardsL = (L1, L2)′ : [0,T]×Ω→ R2, (t, ω) 7→ L(t, ω) =: L(t), and
U = (U1,U2)′ : [0,T] × Ω → R2, (t, ω) 7→ U(t, ω) =: U(t) are both{Ft}0≤t≤T-adapted
processes. The terminal rewardξ = (ξ1, ξ2)′ is a pair of real-valuedFT -measurable
random variables. The rewardsh = (h1, h2)′, L, U and ξ are a.e. bounded for all
ω ∈ Ω, 0 ≤ t ≤ T, and all admissible controlsut = µ(t, ω) andvt = υ(t, ω). Here and
throughout this chapter the notationM′ means transpose of some matrixM.

Problem 2.1.3 (N-player game) For i= 1, · · · ,N, the ith Player’s reward process is

Ri
t(τ, u) :=

∫ τmin

t
hi(s,X, us)ds+ Li(τi)1{Di } + Ui(τ(i))1{Dc

i \E}
+ ξi1{E}, (2.1.11)

where the events E and D1, · · · ,DN are defines as

E = {τ j = T, for all j = 1, · · · ,N}, (2.1.12)

and
Di = {τi < all of τ1, · · · , τi−1, τi+1, · · · , τN}, (2.1.13)

and the stopping rules
τmin = min{τ1, · · · , τN}, (2.1.14)

and
τ(i) = min{τ1, · · · , τi−1, τi+1, · · · , τN}. (2.1.15)

In Problem 2.1.3,ut = (u1
t , · · · , u

N
t ) = µ

t
= (µ1(t, ω), · · · , µN(t, ω)) is a control vector

in U = U1 × · · · ×UN, andτ = (τ1, · · · , τN) is a vector ofN stopping rules inS (t,T).
For i = 1, · · · ,N, the controlui and the stopping ruleτi is at the choice of theith
player, who receives rewardRi

t(τ, u). The cumulative reward rate andh = (h1, · · · , hN) :
[0,T] ×Ω ×A→ RN, (t, ω, µ(t, ω)) 7→ h(t, ω, µ(t, ω)), is anN-dimensional predictable
process int, non-anticipative functional inX(·), and measurable function inµ(t, ω). The

early exercise rewardsL = (L1, · · · , LN)′ : [0,T] × Ω → RN, (t, ω) 7→ L(t, ω) =: L(t),
andU = (U1, · · · ,UN)′ : [0,T]×Ω→ RN, (t, ω) 7→ U(t, ω) =: U(t) are both{Ft}0≤t≤T -
adapted processes. The terminal rewardξ = (ξ1, · · · , ξN)′ is a vector ofN real-valued
FT -measurable random variables. The rewardsh, L, U andξ are a.e. bounded for all
ω ∈ Ω, 0 ≤ t ≤ T, and all admissible controlsut = µ(t, ω).

2.2 A representative player’s optimization

In this section, we will focus on solving a representative player’s optimization Problem
2.1.1 with expected reward

Jt(τ, u) := Eu[Rt(τ, u)|Ft], (2.2.1)
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where the rewardRt(τ, u) is defined as in (2.1.9). This is a question of discretionary
stopping, finding a stopping ruleτ∗ and controlu∗ to maximize the expected reward
(2.2.1), over all stopping rulesτ in S (t, ρ) and all controlsu in U . It is the very op-
timization problem that a genericith player in anN-player game faces, when all the
other players’ strategies are given.

The following notations will facilitate expositions in this section.

Notation 2.2.1 (1) When a strategy(τ∗, u∗) maximizes (2.2.1), it attains suprema in

Y(t) := sup
τ∈S (t,ρ)

sup
u∈U

Jt(τ, u) = Jt(τ∗, u∗). (2.2.2)

The process Y is called the value process of the optimal control and stopping problem
with expected reward (2.2.1).

(2) For a generic admissible control u, define

V(t, u) :=Y(t) +
∫ t

0
h(s,X, us)ds

= sup
τ∈S (t,ρ)

sup
u∈U

Jt(τ, u) +
∫ t

0
h(s,X, us)ds

= sup
τ∈S (t,ρ)

sup
u∈U
E

u[Rt(τ, u)|Ft] +
∫ t

0
h(s,X, us)ds.

(2.2.3)

(3) Since the stopping rules are defined on every pathω ∈ Ω, the choice of an optimal
stopping rule is irrelevant of the control applied. Define

Y(t, u) := sup
τ∈S (t,ρ)

Jt(τ, u) ≥ Jt(t, u) = L(t)1{t<ρ} + η1{t=ρ}. (2.2.4)

We remember thatJt(t, u) refers to the conditional expectationEu[L(t)1{t≤ρ}+η1{t=ρ}|Ft].
Becauseρ is an {Ft}-stopping rule, the events{t ≤ ρ} and {t = ρ} areFt measur-
able. On{t ≤ ρ}, Jt(t, u) = L(t) becauseL is progressively measurable. On{t = ρ},
Jt(t, u) = Eu[η|Fρ] = η, becauseη is Fρ-measurable. This is why the last identity in
(2.2.4) holds true.

(4) Also for a genericu, define

Q(t, u) :=Y(t, u) +
∫ t

0
h(s,X, us)ds

= sup
τ∈St,ρ

Jt(τ, u) +
∫ t

0
h(s,X, us)ds

= sup
τ∈St,ρ

E
u[R0(τ, u)|Ft].

(2.2.5)

(5) The Hamiltonian is defined as

H(t, ω, z, ut) = H(t, ω, z, µ(t, ω)) := zσ−1(t, ω) f (t, ω, µ(t, ω)) + h(t, ω, µ(t, ω)), (2.2.6)

for 0 ≤ t ≤ T, ω ∈ Ω, z in Rd, and all admissible controlsut = µ(t, ω).
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2.2.1 optimal stopping

In (2.2.4),Y(·, u) is said to be the value process of the optimal stopping problem. The
processQ(·, u) defined by equaitons (2.2.5) is the Snell envelope ofR0(·, u). It is the
smallest RCLL supermartingale dominatingR0(·, u). A proof of results in Lemma 2.2.1
can be found in (Appendix D, Karatzas and Shreve (1998) [34]). The proofs in their
book proceeded with a finite deterministic terminal time, but also good for a bounded
{Ft}t-stopping time as the terminal time. To pass to the bounded random terminal time
ρ which is an{Ft}-stopping time, it suffices to multiply the reward with an indicator1{t≤ρ}. See the remark at the end of Elliott (1976) [22].

Let τ∗ = τ∗t (u, ρ) be an optimal stopping rule (stopping time) that attains supremum
in (2.2.5), i.e.,

E
u[R0(τ∗, u)|Ft] = Q(t, u) = sup

τ∈St,ρ

Jt(τ, u) +
∫ t

0
h(s,X, us)ds. (2.2.7)

The following lemma provides an equivalent characterization ofτ∗.

Lemma 2.2.1 The optimality ofτ∗ is equivalent to both of the following conditions
altogether:
(1)

Q(τ∗, u) = R0(τ∗, u), (2.2.8)

or equivalently,
Y(τ∗, u) = L(τ∗)1{τ∗<ρ} + η1{τ∗=ρ}; (2.2.9)

(2) The stopped supermartingale Q(·∧τ∗, u) is aPu-martingale with respect to{Ft}0≤t≤ρ.

Besides,τ∗ has an explicit expression as the first hitting time

τ∗ = inf {t ≤ s< ρ|Q(s, u) = R0(s, u)} ∧ ρ

= inf {t ≤ s< ρ|Y(s, u) = L(s)} ∧ ρ.
(2.2.10)

The optimal time from now on to stop the reward stream is the first time when the value
processY(·, u) drops down to the early exercise rewardL(·). If the two processes never
meet, then wait until the end to take a terminal rewardη at timeρ.

2.2.2 optimal control and stopping

Classical theory on optimal stopping has helped us identifya stopping rule that maxi-
mizes the expected rewardJ(τ, u) over all stopping rules inS (t, ρ).

If there is au∗ ∈ U such that for the optimal stopping ruleτ∗,

Jt(τ∗, u∗) ≥ Jt(τ∗, u), a.s. on [0,T] ×Ω, ∀u ∈ U , (2.2.11)

then since, from subsection 2.2.1,

Jt(τ∗, u) ≥ Jt(τ, u), ∀u ∈ U , τ ∈ S (t, ρ), (2.2.12)
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the pair of strategies (τ∗, u∗) satisfies

Jt(τ∗, u∗) ≥ Jt(τ, u), ∀u ∈ U , τ ∈ S (t, ρ). (2.2.13)

That (τ∗, u∗) satisfies inequality (2.2.13) is equivalent to its maximizing (2.2.1) and at-
taining suprema in (2.2.2).

The rest of this subsection will look for such au∗ satisfying inequality (2.2.11). To
simplify notations, in proofs of this subsection,L(·) is redefined as

L(t) := L(t)1{t<ρ} + η1{t=ρ}, 0 ≤ t ≤ ρ. (2.2.14)

Let Ut denote the quotient space where controls inU identical on [t,T] are equivalent.
To be rigorous, for anyu, v ∈ U ,

u ∼ v, if and only if us = vs, a.s. on (s, ω) ∈ [t,T] × Ω; (2.2.15)

Ut = U / ∼ . (2.2.16)

Lemma 2.2.2 (Karatzas and Zamfirescu (2008) [38])
Suppose0 ≤ τ1 ≤ τ2 ≤ T. τ1 and τ2 are both{Ft}-stopping times. us = vs on
s ∈ [τ1, τ2], then for any boundedFτ2-measurable random variableΘ,

E
u[Θ|Fτ1] = E

v[Θ|Fτ1]. (2.2.17)

Lemma 2.2.2 suggests,
sup
u∈U

Jt(·, u) = sup
u∈Ut

Jt(·, u). (2.2.18)

To maximizeJt(·, u) overu ∈ U , it suffices to consider the values of controls on [t,T].

Lemma 2.2.3 For any t ∈ [0,T], and anyτ ∈ S (t, ρ), the set of random variables
{Jt(τ, u)}u∈Ut is a family directed upwards, i.e.,∀u1, u2 ∈ Ut, there exists a u0 ∈ Ut,
such that

Jt(τ, u0) = Jt(τ, u1) ∨ Jt(τ, u2). (2.2.19)

Hence there exists a sequence of controls un(τ) ∈ Ut, such that

lim
n→∞
↑ Jt(τ, un(τ)) = sup

u∈U
Jt(τ, u). (2.2.20)

Proof. Define anFt-measurable set

A := {ω ∈ Ω|Jt(τ, u1) ≥ Jt(τ, u2)}. (2.2.21)

Let u0 = u11{A} + u21{Ac} ∈ Ut. Then

Jt(τ, u0) = Eu0
[Rt(τ, u0)|Ft] =















E
u1

[Rt(τ, u1)|Ft], on A

E
u2

[Rt(τ, u2)|Ft], on Ac
= Jt(τ, u1) ∨ Jt(τ, u2).

(2.2.22)
By the proposition on page 121 of Neveu (1975) [41], there exists a sequence of con-
trols inUt, approximating the supremum from below. By Lemma 2.2.2, supremum of
Jt(τ, u) overUt is the same as supremum overU . �
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Theorem 2.2.1 A strategy(τ∗, u∗) is optimal in the sense of (2.2.13), if and only if the
following three conditions hold.
(1) Y(τ∗) = L(τ∗)1{τ∗<ρ} + η1{τ∗=ρ};
(2) V(· ∧ τ∗, u∗) is aPu∗ -martingale;
(3) For every u∈ U , V(· ∧ τ∗, u) is aPu-supermartingale.

Proof. ”if”

For anyτ ≤ τ∗ ∈ St,ρ and anyu ∈ U , L(τ) ≤ Y(τ, u) = Y(τ). By (2.2.2), (2.2.3),
and (2.2.13),

Rt(τ, u)+
∫ t

0
h(s,X, us)ds= L(τ)+

∫ τ

0
h(s,X, us)ds≤ Y(τ)+

∫ τ

0
h(s,X, us)ds= V(τ, u).

(2.2.23)
From condition(1), equality holds in (2.2.23) with the choice ofτ = τ∗, giving

Rt(τ
∗, u) +

∫ t

0
h(s,X, us)ds= V(τ∗, u). (2.2.24)

Then,

Y(t) +
∫ t

0
h(s,X, us)ds= V(t, u) ≥ Eu[V(τ, u)|Ft] ≥ E

u[Rt(τ, u)|Ft] +
∫ t

0
h(s,X, us)ds.

(2.2.25)
In (2.2.25), the identity comes from (2.2.3) the definition of V, first inequality from
supermartingale property(3), and second inequality from (2.2.23). From martingale
property(2), and identity (2.2.24), both inequalities become equalities if u = u∗ and
τ = τ∗. Hence for anyu ∈ Ut, anyτ ∈ S (t, ρ)

E
u[Rt(τ ∧ τ∗, u)|Ft] ≤ Y(t), (2.2.26)

where equality attained byu = u∗ andτ = τ∗.

”only if”

Condition(1) comes from Lemma 2.2.1.τ∗ = τ∗(ρ, u∗) has the form of (2.2.10). For
anyu ∈ U , Lemma 2.2.10 states thatY(τ∗, u) = L(τ∗)1{τ∗<ρ} + η1{τ∗=ρ}. Condition (1)
is true, becauseY(τ∗) = sup

u∈U
Y(τ∗, u).

To see the supermartingale property(3), take 0≤ s ≤ t ≤ τ∗ ≤ T, and an arbitrary
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u ∈ Ut.

E
u

[

Jt(τ∗, u) +
∫ t

s
h(r,X, ur)dr

∣

∣

∣

∣

∣

∣

Fs

]

=Eu

[

E
u

[∫ τ∗∧ρ

t
h(r,X, ur)dr + L(τ∗)

∣

∣

∣

∣

∣

∣

Ft

]

+

∫ t

s
h(r,X, ur)dr

∣

∣

∣

∣

∣

∣

Fs

]

=Eu

[∫ τ∗∧ρ

s
h(r,X, ur)dr + L(τ∗)

∣

∣

∣

∣

∣

∣

Fs

]

= sup
τ∈Ss,ρ

E
u

[∫ τ∧ρ

s
h(r,X, ur)dr + L(τ)

∣

∣

∣

∣

∣

∣

Fs

]

=Js(τ∗, u).

(2.2.27)

Sinceu∗ is optimal,
Js(τ∗, u) ≤ Js(τ∗, u∗). (2.2.28)

By Lemma 2.2.3, there exists a sequence of controls{un}n ∈ Ut, such that

lim
n→∞
↑ Jt(τ∗, un) = Jt(τ∗, u∗). (2.2.29)

For everyun, from (2.2.27) and (2.2.28),

E
u

[

Jt(τ
∗, un) +

∫ t

s
h(r,X, ur)dr

∣

∣

∣

∣

∣

∣

Fs

]

≤ Js(τ
∗, u∗). (2.2.30)

Let n→ ∞ in (2.2.30). Bounded Convergence Theorem gives

E
u

[

Jt(τ∗, u∗) +
∫ t

s
h(r,X, ur)dr

∣

∣

∣

∣

∣

∣

Fs

]

≤ Js(τ∗, u∗). (2.2.31)

Adding
∫ s

0
h(r,X, ur)dr to both sides of (2.2.31), and by definition ofV in (2.2.3),

E
u[V(t, u)|Fs] ≤ V(s, u). (2.2.32)

From supermartingale property(3), V(· ∧ τ∗, u∗) is aPu∗ -supermartingale. In order that
it is aPu∗ -martingale, it suffices to show

E
u∗ [V(τ∗, u∗)] = V(0, u∗). (2.2.33)

The strategy (τ∗, u∗) is optimal, so for any 0≤ t ≤ τ∗,

Y(t) = Eu∗
[∫ τ∗∧ρ

t
h(s,X, u∗s)ds+ L(τ∗)

∣

∣

∣

∣

∣

∣

Ft

]

. (2.2.34)

It follows that

Y(0) =Eu∗
[∫ τ∗∧ρ

0
h(s,X, u∗s)ds+ L(τ∗)

]

=Eu∗
[

E
u∗

[
∫ τ∗∧ρ

t
h(s,X, u∗s)ds+ L(τ∗)

∣

∣

∣

∣

∣

∣

Ft

]

+

∫ t

0
h(s,X, u∗s)ds

]

=Eu∗
[

Y(t) +
∫ t

0
h(s,X, u∗s)ds

]

=Eu∗ [V(t, u∗)].

(2.2.35)
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The last equation in (2.2.35) comes from the definition ofV in (2.2.3). Remember that
t can be chosen arbitrary over [0, τ∗]. Equating the first and last terms in (2.2.35) gives
(2.2.33). This proves(2). �

Definition 2.2.1 (Thrifty) A control u is called thrifty, if and only if{V(t ∧ τ∗, u)}0≤t≤ρ

is aPu-martingale, whereτ∗ is defined in (2.2.10).

This definition is drawn from a dynamic programming definition of thrifty strategies
on page 48, Dubins and Savage (1965) [14].

Proposition 2.2.1 With the choice of optimal stopping ruleτ∗ from (2.2.10), a strategy
u ∈ U is optimal in the sense of (2.2.13), if and only if it is thrifty.

Proof. This is a proposition from Theorem 2.2.1.�

Theorem 2.2.2 Let τ∗ as defined in (2.2.10), and{V(t, u)}t∈[0,τ∗] defined as in (2.2.3).
Then the following statements hold true

(1) {V(t, u)}t∈[0,τ∗] admits the Doob-Meyer Decomposition

V(t, u) = Y(0)− A(t, u) + M(t, u), 0 ≤ t ≤ τ∗(u) ∧ τ∗(v). (2.2.36)

Y(0) = V(0, u), for all u ∈ U .
(2) A(0, u) = 0. A(·, u) is an increasing, integrable process, satisfying

A(t, u) − A(t, v) = −
∫ t

0
(H(s,X,Zs, us) − H(s,X,Zs, vs))ds,0 ≤ t ≤ τ∗. (2.2.37)

(3) M(·, u) is a right-continuous, uniformly integrablePu-martingale. Further more,
M(·, u) is represented as a stochastic integral

M(t, u) =
∫ t

0
ZsdBu

s, (2.2.38)

where Z is a predictable, square-integrable process irrelevant of u.

Proof. By Theorem 2.2.1,{V(t, u)}t∈[0,τ∗] is aPu-supermartingale. Boundedness of the
rewards guarantees that it is of classD . It then admits the Doob-Meyer Decomposition
(cf. page 24-25, Karatzas and Shreve (1988) [33])

V(t, u) = V(0, u) − A(t, u) + M(t, u), 0≤ t ≤ τ∗. (2.2.39)

By definitions ofV andY, (2.2.2) and (2.2.3),V(0, u) = Y(0), for all u ∈ U . The
P

u-martingaleM(·, u) has the representation (Theorem 3.1, Fujisaki, Kallianpur, and
Kunita, 1972)

M(t, u) =
∫ t

0
Zu

sdBu
s, (2.2.40)



2.2. A REPRESENTATIVE PLAYER’S OPTIMIZATION 35

whereZu is a predictable, square-integrable process. It remains toshowZu is irrelevant
of u. By definition ofBu in (2.1.7),

V(t, u) =Y(0)− A(t, u) +
∫ t

0
Zu

sdBu
s

=Y(0)− A(t, u) −
∫ t

0
Zu

sσ
−1(s,X) f (s,X, us)ds+

∫ t

0
Zu

sdBs, 0≤ t ≤ τ∗.

(2.2.41)

Take arbitraryu, v ∈ U . From (2.2.3) and replacingu by v in (2.2.41),

V(t, u) =V(t, v) +
∫ t

0
(h(s,X, us) − h(s,X, vs))ds

=Y(0)− A(t, v) −
∫ t

0
Zv

sσ
−1(s,X) f (s,X, vs)ds

+

∫ t

0
(h(s,X, us) − h(s,X, vs))ds+

∫ t

0
Zv

sdBs.

(2.2.42)

Identifying martingale terms in (2.2.41) and in (2.2.42), because of uniqueness of mar-
tingale representation, we conclude

Zu
· = Zv

· =: Z·. (2.2.43)

Identifying finite variation terms in (2.2.41) and in (2.2.42),

A(t, u) − A(t, v)

= −

∫ t

0
((h(s,X, us) + Zsσ

−1(s,X) f (s,X, us)) − (h(s,X, vs) + Zsσ
−1(s,X) f (s,X, vs)))ds

= −

∫ t

0
(H(s,X,Zs, us) − H(s,X,Zs, vs))ds, 0 ≤ t ≤ τ∗(u) ∧ τ∗(v).

(2.2.44)

�

Proposition 2.2.2 (Stochastic Maximum Principle)
If (τ∗, u∗) is optimal, then for all u∈ U , and for all0 ≤ t ≤ τ∗(u∗) ∧ τ∗(u),

H(t,X,Zt, u
∗
t ) ≥ H(t,X,Zt, ut). (2.2.45)

Proof. This is a direct consequence of Theorem 2.2.1 and 2.2.2. The optimality of
(τ∗, u∗) implies thatV(·, u∗) is a martingale up to timeτ∗, henceA(·, u∗) = 0. Also
Y(·, u∗) ≥ Y(·, u), henceτ∗(u∗) ≥ τ∗(u), for all u ∈ U . By (2.2.46),

A(t, u) =
∫ t

0
(H(s,X,Zs, u

∗
s) − H(s,X,Zs, us))ds, 0 ≤ t ≤ τ∗(u∗) ∧ τ∗(u). (2.2.46)

ThatA(·, u) being increasing forcesH(·,X,Z·, u∗· ) − H(·,X,Z·, u·) to be nonnegative.�
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Theorem 2.2.3 Let τ∗ be the optimal stopping rule defined as in (2.2.10). If a control
u∗t = µ

∗(t, ω) in U maximizes the Hamiltonian in the way ofIsaacs’ condition

H(t, ω, z, µ∗(t, ω)) ≥ H(t, ω, z, µ(t, ω)), (2.2.47)

for all 0 ≤ t ≤ ρ, ω ∈ Ω, z∈ Rd, and ut = µ(t, ω) in U , then u∗ is optimal in the sense
that

Jt(τ∗, u∗) ≥ Jt(τ∗, u), for all 0 ≤ t ≤ τ∗, and u∈ U . (2.2.48)

Proof. This proof follows the treatment in (section 4, Davis (1979)[12]).
For t ≤ s≤ τ∗, define, for arbitraryu ∈ U ,

Is(u) := Eu∗
[

L(τ∗) +
∫ τ∗

t
h(r,X, u∗r )dr

∣

∣

∣

∣

∣

∣

Fs

]

−

∫ s

t
(h(r,X, u∗r ) − h(r,X, ur))dr. (2.2.49)

By (2.2.1), (2.2.10), and (2.2.11),I t(u) = Jt(τ∗, u∗), andEu[ Iτ∗(u)|Ft] = Jt(τ∗, u). But
I ·(u) can be represented as

Is(u) = I t(u) −
∫ s

t
(h(r,X, u∗r ) − h(r,X, ur))dr +

∫ s

t
Z∗r dBu∗

r , (2.2.50)

for some predictable,Pu∗ -square-integrable processZ∗. Remember the definitions of
the Brownian motionBu in (2.1.7) and the HamiltonianH in (2.2.6), then

Is(u) = I t(u) −
∫ s

t
(H(r,X,Z∗r , u

∗
r ) − H(r,X,Z∗r , ur))dr +

∫ s

t
Z∗r dBu

r . (2.2.51)

Isaacs’ condition (2.2.47) suggestsI ·(u) being aPu-local supermartingale. Via standard
localization arguments,

Jt(τ∗, u∗) = I t(u) ≥ Eu[ Iτ∗(u)|Ft] = Jt(τ∗, u). (2.2.52)

�

2.3 The two-player games

In this section, we shall study the two-player game Problem (2.1.2) as a simplest illus-
tration of theN-Player game Problem (2.1.3). Then, to move forward to theN-player
game, it is only a matter of fancier notations.

The two players in Problem Problem (2.1.2), respectively, maximize their expected
reward processes

J1
t (τ, ρ, u, v) :=E[R1

t (τ, ρ, u, v)|Ft];

J2
t (τ, ρ, u, v) :=E[R2

t (τ, ρ, u, v)|Ft].
(2.3.1)
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Definition 2.3.1 (Equilibrium strategies)
Letτ∗ andρ∗ be stopping rules inS (t,T), and(u∗, v∗) controls inU ×V . The strategy
(τ∗, ρ∗, u∗, v∗) is called an equilibrium point of Problem (2.1.2), if for allstopping rules
τ andρ in S (t,T), and all controls(u, v) in U × V ,

J1
t (τ∗, ρ∗, u∗, v∗) ≥ J1

t (τ, ρ∗, u, v∗);

J2
t (τ∗, ρ∗, u∗, v∗) ≥ J2

t (τ∗, ρ, u∗, v).
(2.3.2)

Given the strategy (ρ∗, v∗) of Player II, Player I’s strategy (τ∗, u∗) maximizes his ex-
pected reward over all stopping rulesτ ∈ S (t,T) and all controlsu ∈ U . Given the
strategy (τ∗, u∗) of Player I, Player II’s strategy (ρ∗, v∗) maximizes his expected reward
over all stopping rulesρ ∈ S (t,T) and all controlsv ∈ V . Each Player faces the con-
trol problem with discretionary stopping, the one solved insection 2.2.

The following notation will facilitate expositions in thissection.

Notation 2.3.1 (1)

Y1(t, u) := Y1(t, u; ρ, v) := sup
τ∈S (t,T)

J1
t (τ, ρ, u, v) ≥ J1

t (t, ρ, u, v);

Y2(t, v) := Y2(t, v; τ, u) := sup
ρ∈S (t,T)

J2
t (τ, ρ, u, v) ≥ J2

t (τ, t, u, v).
(2.3.3)

(2)

Y1(t; ρ, v) := sup
τ∈S (t,T)

sup
u∈U

J1
t (τ, ρ, u, v);

Y2(t; τ, u) := sup
ρ∈S (t,T)

sup
v∈V

J2
t (τ, ρ, u, v).

(2.3.4)

(3)

Q1(t, u) := Q1(t, u; ρ, v) :=Y1(t, u) +
∫ t

0
h1(s,X, us, vs)ds

= sup
τ∈S (t,T)

J1
t (τ, ρ, u, v) +

∫ t

0
h1(s,X, us, vs)ds= sup

τ∈S (t,T)
E[R1

0(τ, ρ, u, v)|Ft];

Q2(t, v) := Q2(t, v; τ, u) :=Y2(t, v) +
∫ t

0
h2(s,X, us, vs)ds

= sup
ρ∈S (t,T)

J2
t (τ, ρ, u, v) +

∫ t

0
h2(s,X, us, vs)ds= sup

ρ∈S (t,T)
E[R2

0(τ, ρ, u, v)|Ft].

(2.3.5)

(4)

V1(t; ρ, u, v) :=Y1(t; ρ, v) +
∫ t

0
h1(s,X, us, vs)ds;

V2(t; τ, u, v) :=Y2(t; τ, u) +
∫ t

0
h2(s,X, us, vs)ds.

(2.3.6)
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(5) The Hamiltonians are defined as

H1(t, ω, z1, ut, vt) = H1(t, ω, z1, µ(t, ω), υ(t, ω))

:=z1σ
−1(t, ω) f (t, ω, µ(t, ω), υ(t, ω)) + h1(t, ω, µ(t, ω), υ(t, ω));

H2(t, ω, z2, ut, vt) = H2(t, ω, z2, µ(t, ω), υ(t, ω))

:=z2σ
−1(t, ω) f (t, ω, µ(t, ω), υ(t, ω)) + h2(t, ω, µ(t, ω), υ(t, ω)),

(2.3.7)

for 0 ≤ t ≤ T, ω ∈ Ω, z1 and z2 in Rd, and all admissible controls ut = µ(t, ω) and
vt = υ(t, ω).

2.3.1 game of stopping

Let us first fix a generic pair of controlsu andv for the two Players respectively. Player
I chooses stopping ruleτ ∈ S (t,T), and Player II chooses stopping ruleρ ∈ S (t,T).
Given a stopping ruleρ0 of Player II, Player I seeks to maximize his expected reward
J1

t (τ1, ρ0, u, v) with τ1. Given a stopping ruleτ0 of Player I, Player II seeks to maximize
his expected rewardJ2

t (τ0, ρ1, u, v) with ρ1.

Definition 2.3.2 (Equilibrium stopping rules)
Let τ∗, ρ∗ ∈ S (t,T), u ∈ U , and v∈ V . The pair of stopping rules(τ∗, ρ∗) is called
an equilibrium stopping rule for the game of stopping with rewards (2.1.10), if for all
τ, ρ ∈ S (t,T),

J1
t (τ∗, ρ∗, u, v) ≥ J1

t (τ, ρ∗, u, v);

J2
t (τ∗, ρ∗, u, v) ≥ J2

t (τ∗, ρ, u, v).
(2.3.8)

Lemma 2.3.1 That (τ∗, ρ∗) is a a pair of equilibrium stopping rules is equivalent to
both of the following two conditions altogether.
(1)

Y1(τ∗, u; ρ∗, v) = L1(τ∗)1{τ∗<ρ∗} + U1(ρ∗)1{ρ∗≤τ∗<T} + ξ11{τ∗∧ρ∗=T}, (2.3.9)

and

Y2(ρ∗, v; τ∗, u) = L2(ρ∗)1{ρ∗<τ∗} + U2(τ∗)1{τ∗≤ρ∗<T} + ξ21{τ∗∧ρ∗=T}; (2.3.10)

(2) The stopped supermartingales Q1(· ∧ τ∗, u; ρ∗, v) and Q2(· ∧ ρ∗, v; τ∗, u) are Pu,v-
martingales.

Besides, suppose in addition L1 ≤ U1, and L2 ≤ U2, a.s., then if their exists a pair
of stopping rules(τ∗, ρ∗) satisfying the equations

τ∗ = inf{t ≤ s< ρ|Y1(s, u; ρ∗, v) = L1(s)} ∧ ρ∗;

ρ∗ = inf{t ≤ s< ρ|Y2(s, v; τ∗, u) = L2(s)} ∧ τ∗,
(2.3.11)

on first hitting times, then(τ∗, ρ∗) are equilibrium.
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Proof. Definition 2.3.2 is equivalent to saying, that when Player IIuses stopping rule
ρ∗, Player I’ stopping ruleτ = τ∗ attains supremum in

Y1(t, u; ρ∗, v) = sup
τ∈S (t,T)

J1
t (τ, ρ∗, u, v), (2.3.12)

and when Player I uses stopping ruleτ∗, Player II’s stopping ruleρ = ρ∗ attains supre-
mum in

Y2(t, v; τ∗, u) = sup
ρ∈S (t,T)

J2
t (τ∗, ρ, u, v). (2.3.13)

Each Player solves the optimal stopping problem in subsection 2.2.1. Applying Lemma
2.2.1 to the two Players respectively proves Lemma 2.3.1. �

Remark. The pair of equilibrium stopping rules (τ∗, ρ∗) defined in Definition 2.3.2
always exists. The equations (2.3.9) and (2.3.10) always have solutions. Lett ∈ [0,T]
be the current time, thenτ∗ = ρ∗ = t is a trivial equilibrium that satisfies inequalities
(2.3.8), and that solves the system (2.3.9) and (2.3.10). ”It does not hurt if no one plays
the game.” Non-trivial equilibrium stopping rules are usually the ones of interest.

Theorem 2.3.1 (non-existence of an optimal stopping rule)
Suppose L1 ≤ U1 + ǫ, and L2 ≤ U2 + ǫ, a.s. for some real numberǫ > 0. Under
Assumption A 2.1, equilibrium stopping rules do not exist.

Proof. If (τ∗, ρ∗) were equilibrium, thenτ∗ would attain supremum in (2.3.12), andρ∗

would attain supremum in (2.3.13). There would have to beτ∗ < ρ∗, a.s., andρ∗ < τ∗,
a.s., which is impossible. �

2.3.2 game of control and stopping

For each of the two Players, when the other Player’s strategyis also equilibrium, his
equilibrium strategies solves the control problem with discretionary stopping in sub-
section 2.2.2. Claims in this subsection can be verified by applying Theorems 2.2.1,
2.2.2, and 2.2.3, and Propositions 2.2.1 and 2.2.2, to each of the two Players.

Theorem 2.3.2 The set of stopping rules and controls(τ∗, ρ∗, u∗, v∗) is an equilibrium
point of Problem 2.1.2, if and only if the following three conditions hold.
(1)

Y1(τ∗; ρ∗, v∗) = L1(τ∗)1{τ∗<ρ∗} + U1(ρ∗)1{ρ∗≤τ∗<T} + ξ11{τ∗∧ρ∗=T}, (2.3.14)

and

Y2(ρ∗; τ∗, u∗) = L2(ρ∗)1{ρ∗<τ∗} + U2(τ∗)1{τ∗≤ρ∗<T} + ξ21{τ∗∧ρ∗=T}; (2.3.15)

(2) The two processes V1(·∧τ∗; ρ∗, u∗, v∗) and V2(·∧ρ∗; τ∗, u∗, v∗) arePu∗ ,v∗-martingales;
(3) For every u∈ U , V1(· ∧ τ∗; ρ∗, u, v∗) is a Pu,v∗-supermartingale. For every v∈ V ,
V2(· ∧ ρ∗; τ∗, u∗, v) is aPu∗ ,v-supermartingale.

Definition 2.3.3 (Thrifty) Suppose(τ∗, ρ∗) are a pair of stopping rules satisfying (2.3.11).
A pair of controls(u, v) is called thrifty, if and only if V1(· ∧ τ∗; ρ∗, u, v) and V2(· ∧
ρ∗; τ∗, u, v) arePu,v-martingales.
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Proposition 2.3.1 With the choice of equilibrium stopping rules(τ∗, ρ∗) satisfying (2.3.9)
and (2.3.10), a pair of controls(u, v) ∈ U ×V is equilibrium in the sense of Definition
3.1.71, if and only if it is thrifty.

Theorem 2.3.3 Suppose(τ∗, ρ∗, u∗, v∗) is a set of equilibrium strategies.{V1(t; ρ, u, v)}t∈[0,τ∗]
and{V2(t; τ, u, v)}t∈[0,ρ∗] admit the Doob-Meyer Decompositions

V1(t; ρ, u, v) =Y1(0;ρ, v) − A1(t; ρ, u, v) + M1(t; ρ, u, v), 0 ≤ t ≤ τ∗;

V2(t; τ, u, v) =Y2(0;τ, v) − A2(t; τ, u, v) + M2(t; τ, u, v), 0 ≤ t ≤ ρ∗.
(2.3.16)

Y1(0;ρ, v) = V1(0;ρ, u, v), Y2(0;τ, u) = V2(0;τ, u, v), for all u ∈ U , v ∈ V . A1(0;ρ, u, v) =
A2(0;τ, u, v) = 0. A1(·; ρ, u, v)) and A2(·; τ, u, v) are increasing, integrable processes,
satisfying

A1(t; τ, u1, v) − A1(t; τ, u2, v) = −
∫ t

0
(H1(s,X,Z1(s), u1

s, vs) − H1(s,X,Z1(s), u2
s, vs))ds,

0 ≤ t ≤ τ∗;

A2(t; ρ, u, v1) − A2(t; ρ, u, v2) = −
∫ t

0
(H2(s,X,Z2(s), us, v

1
s) − H(s,X,Z2(s), us, v

2
s))ds,

0 ≤ t ≤ ρ∗.
(2.3.17)

The processes M1(·; ρ, u, v) and M2(·; τ, u, v) are right-continuous, uniformly integrable
P

u,v∗-martingale andPu∗,v-martingale, respectively. Further more, M1(·; ρ, u, v) and
M2(·; τ, u, v) are represented as stochastic integrals

M1(t; ρ, u, v) =
∫ t

0
Zv

1(s)dBu,v
s ;

M2(t; τ, u, v) =
∫ t

0
Zu

2(s)dBu,v
s ,

(2.3.18)

where Zv
1 and Zu

2 are predictable, square-integrable processes. Zv
1 is the same process

for all u, and Zv
2 is the same process for all v.

Proposition 2.3.2 (Stochastic Maximum Principle)
If (τ∗, ρ∗, u∗, v∗) is an equilibrium point of Problem 2.1.2, then

H1(t,X,Z1(t), u∗t , v
∗
t ) ≥H1(t,X,Z1(t), ut, v

∗
t ), for all u ∈ U , 0 ≤ t ≤ τ∗;

H2(t,X,Z2(t), u∗t , v
∗
t ) ≥H2(t,X,Z2(t), u∗t , vt), for all v ∈ V , 0 ≤ t ≤ ρ∗.

(2.3.19)

Theorem 2.3.4 (sufficiency of Isaacs’ condition)
Letτ∗ andρ∗ in S (t,T) be stopping rules satisfying (2.3.8). If the controls u∗

t = µ
∗(t, ω)

in U and v∗t = υ
∗(t, ω) in V satisfyIsaacs’ condition

H1(t, ω, z1, µ
∗(t, ω), υ∗(t, ω)) ≥ H1(t, ω, z1, µ(t, ω), υ∗(t, ω));

H2(t, ω, z2, µ
∗(t, ω), υ∗(t, ω)) ≥ H2(t, ω, z2, µ

∗(t, ω), υ(t, ω)),
(2.3.20)
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for all 0 ≤ t ≤ T,ω in Ω, z1 and z2 in Rd, ut = µ(t, ω) in U and vt = υ(t, ω) in V , then
u∗, v∗ are optimal in the sense that

J1
t (τ∗, ρ∗, u∗, v∗) ≥ J1

t (τ∗, ρ∗, u, v∗), for all u ∈ U , 0 ≤ t ≤ τ∗(u∗, v∗) ∧ τ∗(u, v∗);

J2
t (τ∗, ρ∗, u∗, v∗) ≥ J2

t (τ∗, ρ∗, u∗, v), for all v ∈ V , 0 ≤ t ≤ ρ∗(u∗, v∗) ∧ ρ∗(u∗, v).
(2.3.21)

If a pair of stopping rules satisfies the two equivalent conditions in Lemma 2.3.1, for
all controlsu ∈ U andv ∈ V , and if the controlsu∗ andv∗ satisfy Isaacs’ condition
(2.4.17), then combing (2.3.8) and (2.3.21) suggests that the strategy (τ∗, ρ∗, u∗, v∗) is
an equilibrium point as in Definition 2.3.1.

2.4 TheN-player games

When all the otherN − 1 players’ strategies are given, a player faces the optimization
problem that we have solved in section 2.2. This section willextend the two-player
game Problem 2.1.2 studied in section 2.3 to theN-player version Problem 2.1.3.

Definition 2.4.1 (Equilibrium strategies)
Let τ∗ = (τ∗1, · · · , τ

∗
N) be a vector of stopping rules inS (t,T), and control vector

u∗ = (u∗1, · · · , u
∗
N) in U . The strategy(τ∗, u∗) is called an equilibrium point of the

N-Player stochastic differential game of control and stopping,

Ji
t(τ
∗, u∗) ≥ Ji

t((τ
∗
1, · · · , τ

∗
i−1, τi , τ

∗
i+1, · · · , τ

∗
N), (u1,∗, · · · , ui−1,∗, ui, ui+1,∗, · · · , uN,∗)),

(2.4.1)
for all stopping rulesτi in S (t,T) and all controls ui in Ui , for each player i, i=
1, · · · ,N.

The characterization of the equilibrium point will use the following notations defined
for all i = 1, · · · ,N.

Notation 2.4.1 (1)

Yi(t, u) := Yi(t, u; τ) := sup
τi∈S (t,T)

Ji
t(τ, u); (2.4.2)

(2)
Yi(t; τ, u) := sup

τi∈S (t,T)
sup
ui∈Ui

Ji
t (τ, u); (2.4.3)

(3)

Qi(t, u) :=Qi(t, u; τ) := Yi(t, u) +
∫ t

0
hi(s,X, us)ds

= sup
τi∈S (t,T)

Ji
t (τ, u) +

∫ t

0
hi(s,X, us)ds= sup

τi∈S (t,T)
E

u[Ri
0(τ, u)|Ft];

(2.4.4)
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(4)

Vi(t; τ, u) := Yi(t; τ, u) +
∫ t

0
hi(s,X, us)ds; (2.4.5)

(5) The Hamiltonians are defined as

Hi(t, ω, zi , ut) = Hi(t, ω, zi , µ(t, ω)) := ziσ
−1(t, ω) f (t, ω, µ(t, ω)) + hi(t, ω, µ(t, ω)),

(2.4.6)

for 0 ≤ t ≤ T,ω ∈ Ω, zi in Rd, and all admissible controls ut = µ(t, ω).

2.4.1 game of stopping

We first fix an arbitrary control vectoru = (u1, · · · , uN) for theN-Players. The purpose
of this subsection is to find a set of equilibrium stopping rulesτ∗ = (τ∗1, · · · , τ

∗
N) in the

sense that

Ji
t (τ
∗, u) ≥ Ji

t((τ
∗
1, · · · , τ

∗
i−1, τi , τ

∗
i+1, · · · , τ

∗
N), u), for all τi ∈ S (t,T), (2.4.7)

for all i = 1, · · · ,N. This is anN-player game of stopping. Equivalent conditions for
the existence of equilibrium stopping rules with be provided for a generic vectoru of
controls.

Definition 2.4.2 (Equilibrium stopping rules)
For a generic control vector u= (u1, · · · , uN) for the N-Players. The set of stopping
rulesτ∗ = (τ∗1, · · · , τ

∗
N) is said to be equilibrium for the N-player game of stopping, if

Ji
t(τ
∗, u) ≥ Ji

t((τ
∗
1, · · · , τ

∗
i−1, τi , τ

∗
i+1, · · · , τ

∗
N), u), for all τi in S (t,T), (2.4.8)

for all i = 1, · · · ,N.

Lemma 2.4.1 Thatτ∗ is a vector of equilibrium stopping rules is equivalent to both of
the following conditions altogether, for all i= 1, · · · ,N,

(1)

Yi(τ
∗
i ; τ
∗, u∗) =Ri

τ∗min
(τ∗, u∗)

=Li(τ∗i )1{τ∗i <τ∗(i)} + Ui(τ∗(i))1{τ∗(i)≤τ∗i <T} + ξi1{τ∗min=T};
(2.4.9)

(2) The stopped supermartingale Qi(· ∧ τ∗i , u; τ∗) is aPu-martingale.

Besides, suppose in addition Li ≤ Ui , a.s., for all i = 1, · · · ,N, then if their exists
a pair of stopping rules(τ∗, ρ∗) satisfying the equations















































τ∗1 = inf{t ≤ s< ρ|Y1(τ∗1; τ∗, u∗) = L1(s)} ∧ τ∗(1);

τ∗2 = inf{t ≤ s< ρ|Y2(τ∗2; τ∗, u∗) = L2(s)} ∧ τ∗(2);

...

τ∗N = inf{t ≤ s< ρ|YN(τ∗N; τ∗, u∗) = LN(s)} ∧ τ∗(N),

(2.4.10)

on first hitting times, thenτ∗ is an equilibrium stopping rule.
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Proof. By Lemma 2.2.1. �

Theorem 2.4.1 (non-existence of an optimal stopping rule)
Suppose Li ≤ Ui + ǫ, a.s., for all i = 1, · · · ,N, for some real numberǫ > 0. Under
Assumption A 2.1, equilibrium stopping rules do not exist.

Proof. If τ∗ were equilibrium, there would have to beτ∗i < τ
∗
(i), a.s., for alli = 1, · · · ,N,

which is impossible. �

2.4.2 game of control and stopping

Suppose (τ∗, u∗) is an equilibrium point of theN-player game of controls and stopping.
Given all the otherN−1 Players’ stopping rules (τ∗1, · · · , τ

∗
i−1, τ

∗
i+1, · · · , τ

∗
N) and controls

(u1,∗, · · · , ui−1,∗, ui, ui+1,∗, · · · , uN,∗), the strategy (τi , ui) = (τ∗i , u
i,∗) maximizes Playeri’s

expected reward

Ji
t ((τ

∗
1, · · · , τ

∗
i−1, τi , τ

∗
i+1, · · · , τ

∗
N), (u1,∗, · · · , ui−1,∗, ui , ui+1,∗, · · · , uN,∗)). (2.4.11)

Playeri faces a maximization problem solved in section 2.2. As consequences of The-
orems 2.2.1, 2.2.2, and 2.2.3, and Propositions 2.2.1 and 2.2.2 , we have the following
results for theN-player game.

Theorem 2.4.2 The strategy(τ∗, u∗) is an equilibrium point of the N-player game
of controls and stopping, if and only if the following three conditions hold for all
i = 1, · · · ,N.

(1)

Yi(τ∗i ; τ
∗, u∗) =Ri

τ∗min
(τ∗, u∗)

=Li(τ∗i )1{τ∗i <τ∗(i)} + Ui(τ∗(i))1{τ∗(i)≤τ∗i <T} + ξi1{τ∗min=T};
(2.4.12)

(2) Vi(· ∧ τ∗i ; τ
∗, u∗) is aPu∗-martingale;

(3) For every ui ∈ Ui , the process Vi(· ∧ τ∗i ; τ
∗, (u1,∗, · · · , ui−1,∗, ui , ui+1,∗, · · · , uN,∗)) is a

P
(u1,∗ ,··· ,ui−1,∗ ,ui ,ui+1,∗,··· ,uN,∗)-supermartingale.

Definition 2.4.3 (Thrifty) Supposeτ∗ are equilibrium stopping rules. A vector uof
controls is called thrifty, if and only if Vi(· ∧ τ∗i ; τ

∗, u) is a Pu-martingale for all i =
1, · · · ,N.

Proposition 2.4.1 With the choice of equilibrium stopping rulesτ∗, a vector u∈ U

controls is equilibrium in the sense of Definition 2.4.1, if and only if it is thrifty.

Theorem 2.4.3 Suppose(τ∗, u∗) are equilibrium strategies, then the following state-
ments are true for all i= 1, · · · ,N.
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(1) Vi(· ∧ τ∗i ; τ
∗, (u1,∗, · · · , ui−1,∗, ui, ui+1,∗, · · · , uN,∗)) admits the Doob-Meyer Decom-

position

Vi(t ∧ τ∗i ; τ
∗, (u1,∗, · · · , ui−1,∗, ui, ui+1,∗, · · · , uN,∗))

=Yi(0;τ∗, (u1,∗, · · · , ui−1,∗, ui , ui+1,∗, · · · , uN,∗)) − Ai(t; ui) + Mi(t; ui), 0 ≤ t ≤ τ∗i .
(2.4.13)

(2) For all ui ∈ Ui , Ai(0;ui) = 0. Ai(·; ui) is an increasing, integrable process, satisfying

Ai(t; ui) − Ai(t; vi)

= −

∫ t

0
(Hi(s,X,Zi(s), (u

1,∗, · · · , ui−1,∗, ui , ui+1,∗, · · · , uN,∗)s)

− Hi(s,X,Zi(s), (u1,∗, · · · , ui−1,∗, vi , ui+1,∗, · · · , uN,∗)s))ds,0 ≤ t ≤ τ∗i .

(2.4.14)

(3) For all ui ∈ Ui , Mi(0;ui) = 0. Mi(·; ui) is a right-continuous, uniformly integrable
P

(u1,∗ ,··· ,ui−1,∗ ,ui ,ui+1,∗,··· ,uN,∗)-martingale. Mi(·; ui) is represented as the stochastic integral

Mi(t; ui) =
∫ t

0
Z(u1,∗ ,··· ,ui−1,∗,ui ,ui+1,∗,··· ,uN,∗)

i (s)dB(u1,∗,··· ,ui−1,∗ ,ui ,ui+1,∗,··· ,uN,∗)
s , (2.4.15)

where Z(u1,∗ ,··· ,ui−1,∗,ui ,ui+1,∗ ,··· ,uN,∗)
i is a predictable, square-integrable process identical for

all ui ∈ Ui .

Proposition 2.4.2 (Stochastic Maximum Principle)
If (τ∗, u∗) is an equilibrium point of the N-player game of controls and stopping, then,
for all i = 1, · · · ,N,

Hi(t,X,Zi(t), u∗t ) ≥ Hi(t,X,Zi(t), (u∗1, · · · , u
∗
i−1, ui , u

∗
i+1, · · · , u

∗
N)t), (2.4.16)

for all ui ∈ Ui , 0 ≤ t ≤ τ∗.

Theorem 2.4.4 (Sufficiency of Isaacs’ condition)
Let τ be a vector of equilibrium stopping rules. If a control vector u∗ = µ(t, ω) in U

satisfyIsaacs’ condition

Hi(t, ω, zi , µ
∗(t, ω)) ≥ Hi(t, ω, zi , (µ1,∗, · · · , µi−1,∗, µi , µi+1,∗, · · · , uN,∗)(t, ω)), (2.4.17)

for all 0 ≤ t ≤ T, ω ∈ Ω, zi ∈ R
d, ui

t = µ
i(t, ω) in Ui , for all i = 1, · · · ,N, then u∗ is

equilibrium in the sense that

Ji
t(τ
∗, u∗) ≥ Ji

t(τ
∗, (u1,∗, · · · , ui−1,∗, ui, ui+1,∗, · · · , uN,∗)), for all ui ∈ Ui , (2.4.18)

for all i = 1, · · · ,N. Combining (2.4.7) and (2.4.18), the set of strategies(τ∗, u∗) is an
equilibrium point by Definition 2.4.1.



Chapter 3

BSDE Approach

This chapter considers non-zero-sum games with features ofboth stochastic control
and optimal stopping, for a process of diffusion type, via the backward SDE approach.
Running rewards, terminal rewards and early exercise rewards are all included. The
running rewards can be functionals of the diffusion state process. Since the Nash equi-
librium of anN-player non-zero-sum game is technically not more difficult than a two-
player non-zero-sum game, only notationally more tedious,the number of players is
assumed to be two, for concreteness.

Section 3.1 solves two games of control and stopping. The controls enter the drift
of the underlying state process.

In the first game of section 3.1, each player controls and stops, and his stopping time
terminates his own reward stream only. The value processes of both players are part
of the solution to a multi-dimension BSDE with reflecting barrier. The instantaneous
volatilities of the two players’ value processes are explicitly expressed in the solution.
Existence of the solution to general forms of the multi-dimensional BSDE with re-
flecting barrier will be proven in section 3.2 and section 3.3. Then, in the Markovian
framework, the instantaneous volatilities can enter the controls as arguments, in which
case the game is said to observe volatilities in addition to the other two arguments,
namely time and the state-process.

In the second game of section 3.1, there are interactions of stopping. The time for
each player to quit the game is the earliest of his own stopping time and the stopping
time of the other player. Using the original definition of equilibrium introduced by
Nash in 1949, the second game will be reduced to first solving games of the first type,
then proving convergence of an iterated sequence of stopping times. The argument
for convergence is monotonicity, hinted at Karatzas and Sudderth (2006) [35]: earlier
stopping implies smaller value processes, and smaller value processes imply even ear-
lier stopping. This technicality, reluctantly, assumes one pair of the terminal rewards is
increasing. Due to the restriction of the comparison theorem to dimension one, conver-
gence of the iteration will be proven for closed loop controls and Markovian controls

45



46 CHAPTER 3. BSDE APPROACH

only, without observing the volatilities.

Section 3.2 proves existence and uniqueness of the solutionto a multi-dimensional
BSDE with reflecting barrier, a general form of the one that accompanies Game 3.1.1.
Section 3.3 discusses extension of the existence of solutions to equations of ultra-
Lipschitz growth.

In our Game 3.1.1 where each player terminates his own reward, one may argue the op-
timality of stopping times via the semimartingale decomposition of the value processes.
The BSDE approach here proposes a multi-dimensional BSDE whose value processes
in the solution provide the value processes of the non-zero-sum games. News both
good and bad is that general existence result of solutions tomulti-dimensional BSDE
with reflecting barrier still remains a widely open question. As is proven in Hu and
Peng (2006) [31], in several dimensions, the comparison theorem is very restricted, so
the penalization method which solves the one-dimensional counterpart problem does
not help. Without Lipschitz growth condition, convergencearguments of the usual Pi-
card type iteration cannot proceed, either. In a Markovian framework, this paper proves
the Markovian structure of solutions to multidimensional reflected BSDEs with Lips-
chitz growth, and uses this Markovian structure as a starting point to extend existence
result to equations with growth rates linear in the value andvolatility processes, and
polynomial in state process.

3.1 Two games of control and stopping

In the non-zero sum games of control and stopping to be discussed in this chapter, each
player receives a reward. Based on their up-to-date information, the two players I and
II, respectively, first choose their controlsu andv, then the timesτ andρ to stop their
own reward streams. The controlsu andv are two processes that enter the dynamics of
the underlying state process for the rewards. The optimality criterion for our non-zero-
sum games is that of a Nash equilibrium, in which each player’s expected reward is
maximized when the other player maximizes his. In taking conditional expectations of
the rewards, the change-of-measure setup to be formulated fixes one single Brownian
filtration and one single state process for all controlsu andv. Hence when optimizing
the expected rewards over the control sets, there is no need to keep in mind the filtration
or the state process.

Let us set up the rigorous model. We start with ad-dimensional Brownian motion
B(·) with respect to its generated filtration{Ft}0≤t≤T on the canonical probability space
(Ω,F , P), in whichΩ = Cd[0,T] is the set of all continuousd-dimensional function on
a finite deterministic time horizon [0,T], F = B

(

Cd[0,T]
)

is the Borel sigma algebra,
andP is the Wiener measure.

For everyt ∈ [0,T], define a mappingφt : C[0,T] → [0,T] by φt(y)(s) = y(s∧ t),
which truncates the functiony ∈ C[0,T]. For anyy0 ∈ C[0,T], the pre-imageφ−1

t (y0)
collects all functions inC[0,T] which are identical toy0 up to timet. A stopping rule
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is a mappingτ : C[0,T] → [0,T], such that

{y ∈ C[0,T] : τ(y) ≤ t} ∈ φ−1
t (B (C[0,T])) . (3.1.1)

The set of all stopping rules ranging betweent1 andt2 is denoted byS (t1, t2).

In the path-dependentcase, the state processX(·) solves the stochastic functional
equation

X(t) = X(0)+
∫ t

0
σ(s,X)dBs, 0 ≤ t ≤ T, (3.1.2)

where the volatility matrixσ : [0,T] ×Ω→ Rd × Rd, (t, ω) 7→ σ(t, ω), is a predictable
process. In particular in theMarkovian case, the volatility matrixσ : [0,T] × Rd →

R
d ×Rd, (t, ω(t)) 7→ σ(t, ω(t)), is a deterministic mapping, then the state process equa-

tion (3.1.2) becomes the stochastic differential equation

X(t) = X(0)+
∫ t

0
σ(s,X(s))dBs, 0 ≤ t ≤ T. (3.1.3)

The Markovian case is indeed a special case of path-dependence. Since it will receive
some extra attention later at the end of subsection 3.1.2, wedescribe the Markovian
framework separately from the more general path-dependentcase.

Assumption 3.1.1 (1) The volatility matrixσ(t, ω) is nonsingular for every(t, ω) ∈
[0,T] ×Ω;
(2) there exists a positive constant A such that

|σi j (t, ω) − σi j (t, ω̄)| ≤ A sup
0≤s≤t
|ω(s) − ω̄(s)|, (3.1.4)

for all 1 ≤ i, j ≤ d, for all t ∈ [0,T],ω, ω̄ ∈ Ω.

Under Assumption 3.1.1 (2), for every initial valueX(0) ∈ Rd, there exists a pathwise
unique strong solution to equation (3.1.2) (Theorem 14.6, Elliott (1982) [21]).

The controlsu andv take values in some given separable metric spacesA1 andA2,
respectively. We shall assume thatA1 andA2 are countable unions of nonempty, com-
pact subsets, and are endowed with theσ-algebrasA1 andA2 of their respective Borel
subsets. The controlsu andv are said
(i) to be open loop, if ut = µ(t, ω) andvt = υ(t, ω) are {Ft}0≤t≤T -adapted processes
on [0,T], whereµ : [0,T] × Ω → A1 andυ : [0,T] × Ω → A2 are non-anticipative
measurable mappings;
(ii) to beclosed loop, if ut = µ(t,X) andvt = υ(t,X) are non-anticipative functionals of
the state processX(·), for 0≤ t ≤ T, whereµ : [0,T]×Ω→ A1 andυ : [0,T]×Ω→ A2

are deterministic measurable mappings;
(iii) to be Markovian , if ut = µ(t,X(t)) andvt = υ(t,X(t)), for 0 ≤ t ≤ T, where
µ : [0,T] ×Rd → A1 andυ : [0,T] ×Rd → A2 are deterministic measurable functions.

In the path-dependent case, the setU × V of admissible controls are taken as all
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the closed loop controls. The techniques that we shall use tosolve for the optimal
closed loop controls also apply to the open loop controls, sothe extension of the results
from closed loop to open loop is only a matter of more complicated notations. The
discussion will be restricted within the class of closed loop controls for clarity of the
exposition. In the Markovian case, the setU × V of admissible controls are taken as
all the Markovian controls. Markovian controls are a subsetof closed loop controls.

We consider the predictable mapping

f : [0,T] ×Ω × A1 × A2→ R
d,

(t, ω, µ(t, ω), υ(t, ω)) 7→ f (t, ω, µ(t, ω), υ(t, ω)),
(3.1.5)

in the path-dependent case, and the deterministic measurable mapping

f : [0,T] × Ω × A1 × A2→ R
d,

(t, ω, µ(t, ω(t)), υ(t, ω(t))) 7→ f (t, ω(t), µ(t, ω(t)), υ(t, ω(t))),
(3.1.6)

in the Markovian case, satisfying:

Assumption 3.1.1 (continued)
(3) There exists a positive constant A such that

∣

∣

∣σ−1(t, ω) f (t, ω, µ(t, ω), υ(t, ω))
∣

∣

∣ ≤ A, (3.1.7)

for all 0 ≤ t ≤ T, ω ∈ Ω, and all theA1 × A2-valued representative elements
(µ(t, ω), υ(t, ω)) of the control spacesU × V .

For generic controlsut = µ(t, ω) andvt = υ(t, ω), definePu,v, a probability measure
equivalent toP, via the Radon-Nikodym derivative

dPu,v

dP

∣

∣

∣

∣

∣

Ft = exp

{∫ t

0
σ−1(s,X) f (s,X, us, vs)dBs−

1
2

∫ t

0
|σ−1(s,X) f (s,X, us, vs)|2ds

}

.

(3.1.8)
Then, by the Girsanov Theorem,

Bu,v
t := Bt −

∫ t

0
σ−1(s,X) f (s,X, us, vs)ds, 0≤ t ≤ T (3.1.9)

is a Pu,v-Brownian Motion on [0,T] with respect to the filtration{Ft}0≤t≤T . In the
Markovian case, equation (3.1.9) can be written as

Bu,v
t = Bt −

∫ t

0
σ−1(s,X(s)) f (s,X(s), µ(s,X(s)), υ(s,X(s)))ds, 0≤ t ≤ T. (3.1.10)

In the probability space (Ω,F , P) and with respect to the filtration{Ft}0≤t≤T , the pair
(X, Bu,v) is a weak solution to the forward stochastic functional equation

X(t) = X(0)+
∫ t

0
f (s,X, us, vs)ds+

∫ t

0
σ(s,X)dBu,v

s , 0≤ t ≤ T, (3.1.11)
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in the path-dependent case, and a weak solution to the forward stochastic differential
equation

X(t) = X(0)+
∫ t

0
f (s,X(s), µ(s,X(s)), υ(s,X(s)))ds+

∫ t

0
σ(s,X(s))dBu,v

s , 0 ≤ t ≤ T,

(3.1.12)
in the Markovian case.

When playing the game, the two players choose first their admissible controlsu in
U andv in V , then for any givent ∈ [0,T], they choseτt andρt from S (t,T), times
for them to quit the game. The pair of control and stopping rule (u, τ) is up to player I
and the pair (v, ρ) is up to player II. For starting the game at timet, applying controls
u andv, and quitting the game atτt andρt respectively, the players receive rewards
R1

t (τt, ρt, u, v) andR2
t (τt, ρt, u, v). To average over uncertainty, their respective reward

processes are measured by the conditionalP
u,v-expectations

E
u,v[R1

t (τt, ρt, u, v)|Ft] andEu,v[R2
t (τt, ρt, u, v)|Ft]. (3.1.13)

In the non-zero-sum games, the two players seek first admissible control strategiesu∗

in U andv∗ in V , and then stopping rulesτ∗t andρ∗t from S (t,T), to maximize their
expected rewards, in the sense that

E
u∗ ,v∗ [R1

t (τ∗t , ρ
∗
t , u
∗, v∗)|Ft] ≥ Eu,v∗ [R1

t (τt, ρ
∗
t , u, v

∗)|Ft], ∀τt ∈ S (t,T), ∀u ∈ U ;

E
u∗ ,v∗ [R2

t (τ∗t , ρ
∗
t , u
∗, v∗)|Ft] ≥ Eu∗,v[R1

t (τ
∗
t , ρt, u

∗, v)|Ft], ∀ρt ∈ S (t,T), ∀v ∈ V .

(3.1.14)

The interpretation is as follows: when player II employs strategy (ρ∗t , v
∗), the strat-

egy (τ∗t , u
∗) maximizes the expected reward of player I over all possiblestrategies on

S (t,T) × U ; and vice versa, when player I employs strategy (τ∗t , u
∗), the strategy

(ρ∗t , v
∗) is optimal for player II over all possible strategies onS (t,T) × V . The set

of controls and stopping rules (τ∗, ρ∗, u∗, v∗) is called the equilibrium point, orNash
equilibrium , of the game. For notational simplicity, denote

Vi(t) := Eu∗ ,v∗ [Ri
t(τ
∗
t , ρ
∗
t , u
∗, v∗)|Ft], (3.1.15)

the value process of the game for each playeri = 1, 2.

In subsections 3.1.1-3.1.2 and subsection 3.1.3, we shall consider two games, which
differ in the forms of the rewardsR1 andR2.

Game 3.1.1

R1
t (τt, ρt, u, v) = R1

t (τt, u, v) :=
∫ τt

t
h1(s,X, us, vs)ds+ L1(τt)1{τt<T} + ξ11{τt=T};

R2
t (τt, ρt, u, v) = R2

t (ρt, u, v) :=
∫ ρt

t
h2(s,X, us, vs)ds+ L2(ρt)1{ρt<T} + ξ21{ρt=T}.

(3.1.16)
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Game 3.1.2

R1
t (τt, ρt, u, v)

:=
∫ τt∧ρt

t
h1(s,X, us, vs)ds+ L1(τt)1{τt<ρt} + U1(ρt)1{ρt≤τt<T} + ξ11{τt∧ρt=T};

R2
t (τt, ρt, u, v)

:=
∫ τt∧ρt

t
h2(s,X, us, vs)ds+ L2(ρt)1{ρt<τt} + U2(τt)1{τt≤ρt<T} + ξ21{τt∧ρt=T}.

(3.1.17)

Rewards from both games are summations of cumulative rewards at ratesh = (h1, h2)′,
early exercise rewardsL = (L1, L2)′ and U = (U1,U2)′, and terminal rewardsξ =
(ξ1, ξ2)′. Here and throughout this chapter the notationM′ means transpose of some
matrix M. The cumulative reward ratesh1 and h2 : [0,T] × Ω × A1 × A2 → R,
(t,X, µ(t, ω), υ(t, ω)) 7→ hi(t,X, µ(t, ω), υ(t, ω)), i = 1, 2, are predictable processes int,
non-anticipative functionals inX(·), and measurable functions inµ(t, ω) andυ(t, ω).
The early exercise rewardsL : [0,T] × Ω → R

2, (t, ω) 7→ L(t, ω) =: L(t), and
U : [0,T] × Ω → R

2, (t, ω) 7→ U(t, ω) =: U(t) are both{Ft}0≤t≤T -adapted pro-
cesses. The terminal rewardξ = (ξ1, ξ2)′ is a pair of real-valuedFT -measurable
random variables. In the Markovian case, the rewards take the form h(t,X, ut, vt) =
h(t,X(t), µ(t,X(t)), υ(t,X(t))), L(t) = L̄(t,X(t)), U(t) = Ū(t,X(t)), andξ = ξ̄(X(T)), for
all 0 ≤ t ≤ T and some deterministic functions̄L : [0,T] ×Rd → R, Ū : [0,T] ×Rd →

R, andξ̄ : Rd → R2.

Assumption 3.1.2 (1) The early exercise reward processes L and U are continuous,
progressively measurable. In Game 3.1.1, assume L(T) ≤ ξ holds a.e. onΩ. In Game
3.1.2, assume L(t, ω) ≤ U(t, ω) ≤ ξ(ω), a.e. (t, ω) ∈ [0,T] × Ω, and also assume,
for i = 1, 2, that the reward processes Ui(·), whose terminal values are defined as
Ui(T) = ξi , are increasing processes.
(2) There exist some constants p≥ 1 and Crwd > 0, such that

|h(t, ω, µ(t, ω), υ(t, ω))|+|L(t, ω)|+|U(t, ω)|+|ξ(ω)| ≤ Crwd

(

1+ sup
0≤s≤t
|ω(s)|2p

)

, (3.1.18)

a.e. for allω ∈ Ω, 0 ≤ t ≤ T, and all admissible controls ut = µ(t, ω) and vt = υ(t, ω).

From the rewards and the coefficients of the state process, we define the Hamiltonians
associated with our games as

H1(t, ω, z1, ut, vt) = H1(t, ω, z1, µ(t, ω), υ(t, ω))

:=z1σ
−1(t, ω) f (t, ω, µ(t, ω), υ(t, ω)) + h1(t, ω, µ(t, ω), υ(t, ω));

H2(t, ω, z2, ut, vt) = H2(t, ω, z2, µ(t, ω), υ(t, ω))

:=z2σ
−1(t, ω) f (t, ω, µ(t, ω), υ(t, ω)) + h2(t, ω, µ(t, ω), υ(t, ω)),

(3.1.19)

for 0 ≤ t ≤ T, ω ∈ Ω, z1 andz2 in Rd, and all admissible controlsut = µ(t, ω) and
vt = υ(t, ω). From Assumption 3.1.1 (3), the Hamiltonians are Lipschitz functions in
z1 andz2, uniformly over all 0≤ t ≤ T, ω ∈ Ω, and all admissible controlsut = µ(t, ω)
andvt = υ(t, ω).
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Assumption 3.1.3 (Isaacs’ condition) There exist admissible controls u∗
t = µ

∗(t, ω) in
U and v∗t = υ

∗(t, ω) in V , such that

H1(t, ω, z1, µ
∗(t, ω), υ∗(t, ω)) ≥ H1(t, ω, z1, µ(t, ω), υ∗(t, ω));

H2(t, ω, z2, µ
∗(t, ω), υ∗(t, ω)) ≥ H2(t, ω, z2, µ

∗(t, ω), υ(t, ω)),
(3.1.20)

for all 0 ≤ t ≤ T, ω ∈ Ω, (z1, z2) ∈ R2×d, and all admissible controls ut = µ(t, ω) and
vt = υ(t, ω).

The Isaacs’ conditions on the Hamiltonians are ”local” optimality conditions, formu-
lated in terms of every point (t, z1, z2) in Euclidean space and every pathω in the func-
tion spaceΩ. Theorems 3.1.1 and 3.1.2 take the local conditions on the Hamiltoni-
ans and transform them into ”global” optimization statements involving each higher-
dimensional objects, such as stopping times, stochastic processes, etc., cumulated in
the Euclidean space and averaged over the probability space. This implication is en-
dowed by the continuous-time setting, contrasted to some discrete-time optimization
problems where local maximization need not lead to global maximization.

When linking value processes of the games to the solutions toBSDEs, we shall dis-
cuss the solutions in the following spacesM2(m; 0,T) andL2(m×d; 0,T) of processes,
defined as

M
k(m; t,T)

:=

{

m-dimensional predictable RCLL processφ(·) s.t.E

[

sup
[t,T]

φ2
s

]

≤ ∞

}

,
(3.1.21)

and

L
k(m× d; t,T)

:=

{

m× d-dimensional predictable RCLL processφ(·) s.t.E

[∫ T

t
φ2

sdt

]

≤ ∞

}

,

(3.1.22)

for k = 1, 2, and 0≤ t ≤ T.

3.1.1 Each player’s reward terminated by himself

This subsection studies Game 3.1.1 where a player’s time to quit is determined by his
own decision. We shall demonstrate that the solution to a two-dimensional BSDE with
reflecting barrier provides to the two players’ value processes. The optimal stopping
rules will be derived from reflecting conditions of the BSDE.The optimal controls
come from Isaacs’ condition, Assumption 3.1.3 on the Hamiltonians, which plays here
the role of the driver of the corresponding BSDE.
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The solution to the following system of BSDEs


















































































Yu,v
1 (t) =ξ1 +

∫ T

t
H1(s,X,Zu,v

1 (s), us, vs)ds−
∫ T

t
Zu,v

1 (s)dBs+ Ku,v
1 (T) − Ku,v

1 (t),

Yu,v
1 (t) ≥ L1(t), 0 ≤ t ≤ T;

∫ T

0
(Yu,v

1 (t) − L1(t))dKu,v
1 (t) = 0;

Yu,v
2 (t) =ξ2 +

∫ T

t
H2(s,X,Zu,v

2 (s), us, vs)ds−
∫ T

t
Zu,v

2 (s)dBs+ Ku,v
2 (T) − Ku,v

2 (t),

Yu,v
2 (t) ≥ L2(t), 0 ≤ t ≤ T;

∫ T

0
(Yu,v

2 (t) − L2(t))dKu,v
2 (t) = 0,

(3.1.23)
provides the players’ value processes in Game 3.1.1, with the proper choice of controls
u = u∗ andv = v∗ mandated by Isaacs’ condition. From now on, a BSDE with reflecting
barrier in the form of (3.1.23) will be denoted as (T, ξ,H(u, v), L) for short. The solution
to this BSDE is a triplet of processes (Yu,v,Zu,v,Ku,v), satisfyingYu,v(·) ∈ M2(2; 0,T),
Zu,v(·) ∈ L2(2× d; 0,T), andKu,v(·) = (Ku,v

1 (·),Ku,v
2 (·))′ a pair of continuous increasing

processes inM2(2; 0,T).

We focus on the game aspect in this section, making use of results like existence of
the solution to the BSDE, one-dimensional comparison theorem and continuous de-
pendence theorems to be proven in section 3.2 and section 3.3. The proofs of claims
will not rely on developments in this section.

Theorem 3.1.1 Let(Yu,v,Zu,v,Ku,v) solve BSDE (3.1.23) with parameters(T, ξ,H(u, v), L).
Define the stopping rules

τ∗t (y; r) := inf {s ∈ [t, r] : y(s) ≤ L1(s)} ∧ r, (3.1.24)

and
ρ∗t (y; r) = inf{s ∈ [t, r] : y(s) ≤ L2(s)} ∧ r, (3.1.25)

for y ∈ C[0,T] and r ∈ [t,T]. Let the stopping timesτt(u, v) := τ∗t

(

Yu,v
1 (·); T

)

and

ρt(u, v) := ρ∗t
(

Yu,v
2 (·); T

)

, and the controls u∗ ∈ U and v∗ ∈ V satisfy Isaacs’ condition
Assumption 3.1.3. The quadruplet(τ(u∗, v∗), ρ(u∗, v∗), u∗, v∗) is a Nash equilibrium for
Game 3.1.1. Furthermore, Vi(t) = Yu∗ ,v∗

i (t), i = 1, 2.

Proof. Let (Yu,v,Zu,v,Ku,v) solve BSDE (3.1.23) with parameters (T, ξ,H(u, v), L).
SinceZu,v is square-integrable with respect to theP measure, not necessarily square-
integrable with respect to thePu,v measure, the processes

∫ ·

t
Zu,v

1 (s)dBu,v
s and

∫ ·

t
Zu,v

2 (s)dBu,v
s

are localP-martingales, not necessarilyPu,v-martingales. For everyn = 1, 2, · · · , let

Tn
1 := inf

{

s ∈ [t,T] : |Zu,v
1 (s)| ≥ n

}

∧ T (3.1.26)

be the localizing sequences of stopping times. The localized processes
∫ ·∧Tn

1

t
Zu,v

1 (s)dBu,v
s

and
∫ ·∧Tn

1

t
Zu,v

2 (s)dBu,v
s arePu,v-martingales on [0,T]. As n→ ∞, Tn

1 → T, hence
∫ ·∧Tn

1

t
Zu,v

1 (s)dBu,v
s →

∫ ·

t
Zu,v

1 (s)dBu,v
s , (3.1.27)
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and
∫ ·∧Tn

1

t
Zu,v

2 (s)dBu,v
s →

∫ ·

t
Zu,v

2 (s)dBu,v
s , (3.1.28)

almost everywhere. Taking a stopping ruleτt ∈ S (t,T), and integratingdYu,v
1 from t

to τt ∧ Tn
1,

Yu,v
1 (t) =Yu,v

1 (τt ∧ Tn
1) +

∫ τt∧Tn
1

t
H1(s,X,Zu,v

1 (s), us, vs)ds

−

∫ τt∧Tn
1

t
Zu,v

1 (s)dBs+ Ku,v
1 (τt ∧ Tn

1) − Ku,v
1 (t)

=Yu,v
1 (τt ∧ Tn

1) +
∫ τt∧Tn

1

t
h1(s,X, us, vs)ds

−

∫ τt∧Tn
1

t
Zu,v

1 (s)dBu,v
s + Ku,v

1 (τt ∧ Tn
1) − Ku,v

1 (t)

(3.1.29)

Taking conditional expectationEu,v[·|Ft], sinceYu,v
1 (·) ≥ L1(·), Yu,v

1 (T) = ξ1, andK1(·)
is an increasing process,

Yu,v
1 (t) =Eu,v

[

Yu,v
1 (τt ∧ Tn

1) +
∫ τt∧Tn

1

t
h1(s,X, us, vs)ds+ Ku,v

1 (τt ∧ Tn
1) − Ku,v

1 (t)

∣

∣

∣

∣

∣

∣

Ft

]

≥Eu,v

[

L1(τt ∧ Tn
1)1{τt∧Tn

1<T} + ξ11{τt∧Tn
1=T} +

∫ τt∧Tn
1

t
h1(s,X, us, vs)ds

∣

∣

∣

∣

∣

∣

Ft

]

.

(3.1.30)

According to the reflecting condition in BSDE (3.1.23),Ku,v
1 (τt(u, v) ∧ Tn

1) = Ku,v
1 (t),

becauseKu,v
1 (·) is flat on {(ω, t) ∈ (Ω × [0,T]) : Yu,v

1 (t) , L1(t)}. On {τt(u, v) < T},
Yu,v

1 (τt(u, v)) = L1(τt(u, v)); on {τt(u, v) = T}, Yu,v
1 (τt(u, v)) = ξ1. Then,

Yu,v
1 (t)

=Eu,v

[

Yu,v
1 (τt(u, v) ∧ Tn

1) +
∫ τt(u,v)∧Tn

1

t
h1(s,X, us, vs)ds

∣

∣

∣

∣

∣

∣

Ft

]

=Eu,v
[

Yu,v
1 (Tn

1)1{Tn
1<τt(u,v)}

∣

∣

∣Ft

]

+ Eu,v

[

L1(τt(u, v))1{τt(u,v)≤Tn
1 ,τt(u,v)<T} + ξ11{τt(u,v)≤Tn

1 ,τt(u,v)=T} +

∫ τt(u,v)∧Tn
1

t
h1(s,X, us, vs)ds

∣

∣

∣

∣

∣

∣

Ft

]

.

(3.1.31)

From Assumption 3.1.3 (2), both rewards inside the last conditional expectations in
(3.1.30) and (3.1.31) are bounded by

(1+ T)Crwd

(

1+ sup
0≤s≤T

|X(s)|2p

)

. (3.1.32)

But since (X, Bu,v) is a weak solution to the stochastic functional equation (3.1.11),
there exists (cf. page 306 of Karatzas and Shreve (1988) [33]) a constantC such that

E
u,v

[

sup
0≤s≤T

|X(s)|2p

]

≤ C
(

1+ |X(0)|2p
)

< ∞. (3.1.33)
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We then apply the dominated convergence theorem to the last conditional expectations
in (3.1.30) and (3.1.31), to get

lim
n→∞
E

u,v

[

L1(τt ∧ Tn
1)1{τt∧Tn

1<T} + ξ11{τt∧Tn
1=T} +

∫ τt∧Tn
1

t
h1(s,X, us, vs)ds

∣

∣

∣

∣

∣

∣

Ft

]

=Eu,v

[

L1(τt)1{τt<T} + ξ11{τt=T} +

∫ τt

t
h1(s,X, us, vs)ds

∣

∣

∣

∣

∣

Ft

]

,

(3.1.34)

and

lim
n→∞
E

u,v

[

L1(τt(u, v))1{τt(u,v)≤Tn
1 ,τt(u,v)<T} + ξ11{τt(u,v)≤Tn

1 ,τt(u,v)=T} +

∫ τt(u,v)∧Tn
1

t
h1(s,X, us, vs)ds

∣

∣

∣

∣

∣

∣

Ft

]

=Eu,v

[

L1(τt(u, v))1{τt(u,v)<T} + ξ11{τt(u,v)=T} +

∫ τt(u,v)

t
h1(s,X, us, vs)ds

∣

∣

∣

∣

∣

∣

Ft

]

.

(3.1.35)

For the fixedt ∈ [0,T], denote

θ(s, us, vs) := σ−1(s,X) f (s,X, us, vs), t ≤ s≤ T. (3.1.36)

Then, from the change of measure (3.1.8) and the Bayes rule,

E
u,v

[

Yu,v
1 (Tn

1)1{Tn
1<τt(u,v)}

∣

∣

∣Ft

]

=E

[

exp

{∫ Tn
1

t
θ(s, us, vs)dBs−

1
2

∫ Tn
1

t
|θ(s, us, vs)|

2ds

}

Yu,v
1 (Tn

1)1{Tn
1<τt(u,v)}

∣

∣

∣

∣

∣

∣

Ft

]

.

(3.1.37)

Both random variables inside the expectations in (3.1.37) converge to zero a.e., asn
tends to infinity. Furthermore,

exp

{∫ Tn
1

t
θ(s, us, vs)dBs−

1
2

∫ Tn
1

t
|θ(s, us, vs)|

2ds

}

|Yu,v
1 (Tn

1)|1{Tn
1<τt(u,v)}

≤ sup
t≤s≤T

exp

{∫ s

t
θ(r, ur , vr)dBr −

1
2

∫ s

t
|θ(r, ur , vr )|2dr

}

|Yu,v
1 (s)|,

(3.1.38)

and

E

[

sup
t≤s≤T

exp

{∫ s

t
θ(r, ur , vr )dBr −

1
2

∫ s

t
|θ(r, ur , vr )|2dr

}

|Yu,v
1 (s)|

∣

∣

∣

∣

∣

∣

Ft

]

≤E

[

sup
t≤s≤T

exp

{∫ s

t
2θ(r, ur , vr)dBr −

1
2

∫ s

t
2|θ(r, ur , vr )|

2dr

}
∣

∣

∣

∣

∣

∣

Ft

]1/2

E

[

sup
t≤s≤T

(

Yu,v
1 (s)

)2
∣

∣

∣

∣

∣

∣

Ft

]1/2

.

(3.1.39)

By the dominated convergence theorem, in order that (3.1.37) converge to zero, it suf-
fices that the right hand side of (3.1.39) be finite. From the definition of the solutions
to reflected BSDEs, as in section 3.2 and section 3.3, we know that

E

[

sup
t≤s≤T

(

Yu,v
1 (s)

)2
]

< ∞ (3.1.40)



3.1. TWO GAMES OF CONTROL AND STOPPING 55

holds, so it remain to show that

E

[

sup
t≤s≤T

exp

{∫ s

t
2θ(r, ur , vr)dBr −

1
2

∫ s

t
2|θ(r, ur , vr )|

2dr

}]

< ∞. (3.1.41)

Because|θ(s, us, vs)| is bounded by the constantA, from Assumption 3.1.1 (3) and
identity (3.1.36), we know that the process

exp

{∫ ·

t
2θ(s, us, vs)dBs−

1
2

∫ ·

t
2|θ(s, us, vs)|

2ds

}

(3.1.42)

is a.e. bounded by the constanteA2T times the exponentialP-martingale

Q(·) := exp

{∫ ·

t
2θ(s, us, vs)dBs−

1
2

∫ ·

t
4|θ(s,X, us, vs)|2ds

}

(3.1.43)

on [0,T] with quadratic variation process

〈Q〉 (·) = 4
∫ ·

t

(

Q2(s)
∫ s

t
|θ(r, ur , vr )|2dr

)

ds. (3.1.44)

But

Q2(·)
∫ ·

t
|θ(s, us, vs)|2ds

≤A2Te4A2T exp

{∫ ·

t
4θ(s, us, vs)dBs−

1
2

∫ ·

t
16|θ(s, us, vs)|2ds

}

.

(3.1.45)

By the Burkholder-Davis-Gundy inequalities and inequality (3.1.45), there exists a con-

stantC, such thatE

[

sup
t≤s≤T

Q(s)

]

is dominated by

2CAT1/2e2A2T
E















(∫ T

t
exp

{∫ s

t
4θ(r, ur , vr )dBr −

1
2

∫ s

t
16|θ(r, ur , vr )|2dr

}

ds

)1/2












≤2CAT1/2e2A2T

(∫ T

t
E

[

exp

{∫ s

t
4θ(r, ur , vr )dBr −

1
2

∫ s

t
16|θ(r, ur , vr )|

2dr

}]

ds

)1/2

=2CAT1/2e2A2T(T − t)1/2.

This proves (3.1.41).
We may now state that

E
u,v

[

Yu,v
1 (Tn

1)1{Tn
1<τt(u,v)}

∣

∣

∣Ft

]

=E

[

exp

{∫ Tn
1

t
θ(s, us, vs)dBs−

1
2

∫ Tn
1

t
|θ(s, us, vs)|2ds

}

Yu,v
1 (Tn

1)1{Tn
1<τt(u,v)}

∣

∣

∣

∣

∣

∣

Ft

]

→0, asn→ 0.
(3.1.46)
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The expressions (3.1.30), (3.1.31), (3.1.34), (3.1.35) and (3.1.46) together lead to

Yu,v
1 (t) ≥ Eu,v

[

L1(τt)1{τt<T} + ξ11{τt=T} +

∫ τt

t
h1(s,X, us, vs)ds

∣

∣

∣

∣

∣

Ft

]

, (3.1.47)

and

Yu,v
1 (t) = Eu,v

[

L1(τt(u, v))1{τt(u,v)<T} + ξ11{τt(u,v)=T} +

∫ τt(u,v)

t
h1(s,X, us, vs)ds

∣

∣

∣

∣

∣

∣

Ft

]

,

(3.1.48)

which mean that

Yu,v
1 (t) = Eu,v[R1

t (τt(u, v), ρt, u, v)|Ft] ≥ Eu,v[R1
t (τt, ρt, u, v)|Ft], (3.1.49)

for all ρt ∈ S (t,T) and allτt ∈ S (t,T).

To derive optimality of the controls (u∗, v∗) from Isaacs’ condition Assumption 3.1.3,
applying the comparison theorem (Theorem 3.2.2 and 3.3.3) to the first component of
BSDE (3.1.23) givesYu∗ ,v∗

1 (·) ≥ Yu,v∗

1 (·) a.e. on [0,T] ×Ω. From the identity in (3.1.49),

E
u,v∗ [R1

t (τt(u∗, v∗), ρt(u∗, v∗), u∗, v∗)|Ft] = Yu∗ ,v∗

1 (t)

≥Yu,v∗

1 (t) = Eu,v∗ [R1
t (τt(u, v∗), ρt(u, v∗), u, v∗)|Ft].

(3.1.50)

As a conjunction of (3.1.49) and (3.1.50), for allτt ∈ S (t,T),

E
u∗ ,v∗ [R1

t (τt(u∗, v∗), ρt(u∗, v∗), u∗, v∗)|Ft]

≥Eu,v∗ [R1
t (τt(u, v∗), ρt(u, v∗), u, v∗)|Ft]

≥Eu,v∗ [R1
t (τt, ρt(u, v∗), u, v∗)|Ft].

(3.1.51)

The above arguments proceed with arbitrary stopping timesρt ∈ S (t,T), because
player II’s stopping timeρt does not enter player I’s reward.

By symmetry between the two players,

Yu∗ ,v∗

2 = Eu∗,v∗ [R2
t (τt(u∗, v∗), ρt(u∗, v∗), u∗, v∗)|Ft], (3.1.52)

and

E
u∗,v∗ [R2

t (τt(u∗, v∗), ρt(u∗, v∗), u∗, v∗)|Ft] ≥ Eu∗ ,v[R2
t (τt(u∗, v∗), ρt, u

∗, v)|Ft]. (3.1.53)

Combining (3.1.50), (3.1.51), (3.1.52) and (3.1.53) implies, that the quadruplet (τ∗, ρ∗, u∗, v∗)
is a Nash equilibrium and their value processesV(·) are identified with the solution to a
BSDE with reflecting barrier with parameters (T, ξ,H(u∗, v∗), L). The optimal controls
(u∗, v∗) are chosen according to Isaacs’ condition Assumption 3.1.3. Both players stop
respectively according to the pair of rules (τ∗t , ρ

∗
t ), as soon as their expected rewards hit

the early stopping rewardsL1(·) andL2(·) for the first time. �

Remark 3.1.1 The absence of Li(·) from the reward is equivalent to that the ith player
never stops until time T, i= 1, 2. The corresponding BSDE for his optimal reward
exhibits no reflecting barrier.

Remark 3.1.2 If the deterministic time T is replaced by a bounded{Ft}0≤t≤T -stopping
time, it technically does not make any difference to results in this subsection.
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3.1.2 Controls observing volatility

This subsection discusses whether the inclusion of instantaneous volatilities of the
value processes into the controls will expand the admissible control sets.

For the rewards considered in this chapter, when using control uandv, thePu,v-conditional
expected rewards arePu,v-Brownian semimartingales with respect to the filtration{Ft}0≤t≤T ,
having the decompositions

E
u,v[R1

t (τ, ρ, u, v)|Ft] =Au,v
1 (t) + Mu,v

1 (t) = Au,v
1 (t) +

∫ t

0
Zu,v

1 (s)dBu,v
1 (s);

E
u,v[R2

t (τ, ρ, u, v)|Ft] =Au,v
2 (t) + Mu,v

2 (t) = Au,v
2 (t) +

∫ t

0
Zu,v

2 (s)dBu,v
2 (s).

(3.1.54)

The processesA1(·) and A2(·) have finite variation. The processesM1(·) and M2(·)
arePu,v-local martingales with respect to{Ft}0≤t≤T . The predictable, square-integrable
processesZu,v

1 (·) and Zu,v
2 (·) from martingale representation are called instantaneous

volatility processes, the very integrand processes of the stochastic integrals in the
BSDE (3.1.23). Because they naturally show up in the BSDEs solved by value process
of the game, we may include the instantaneous volatilitiesZu,v

1 (·) andZu,v
2 (·) as argu-

ments of the controlsu andv, in the hope of making more informed decisions. Going
one step further, in the case of risk-sensitive controls initiated by Whittle, Bensous-
san and coworkers, among others, for example Bensoussan, Frehse and Nagai (1998)
[5], the players are sensitive not only to the expectations,but also to the variances of
their rewards. El Karoui and Hamadène (2003) identified in [18] risk-sensitive con-
trols to BSDEs with quadratic growth inZu,v

1 (·) andZu,v
2 (·), which made the problem

very tractable. Their value processes are different from the risk-indifferent case only
up to an exponential transformation. Is it better to emphasize sensitivity to volatilities
by including them as arguments of the controls?

Among the set of closed loop controls, including instantaneous volatilities into the
controls means finding all deterministic measurable functionalsµ : [0,T] × Ω × Rd ×

R
d → A1 andυ : [0,T] × Ω × Rd × Rd → A2, such that when applying the controls

ut = µ(t,X,Z1(t),Z2(t)) andvt = υ(t,X,Z1(t),Z2(t)), for some{Ft}0≤t≤T -adapted pro-
cessesZ1(·) andZ2(·), the resulted instantaneous volatilitiesZu,v

1 (·) andZu,v
2 (·) in the

semimartingale decomposition (3.1.54) coincide with argumentsZ1(·) andZ2(·) of µ
andυ.

Including instantaneous volatilities into Markovian controls means the same as what
is described in the previous paragraph, except thatµ : [0,T] × Rd × Rd × Rd → A1

andυ : [0,T] × Rd × Rd × Rd → A2 are deterministic measurable functions, and that
ut = µ(t,X(t),Z1(t),Z2(t)) andvt = υ(t,X(t),Z1(t),Z2(t)). This is the case about which
we are going to have more to say.
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The Hamiltonians in this case become

H1(t, ω(t), z1, (µ, υ)(t, ω(t), z1, z2))

=z1σ
−1(t, ω(t)) f (t, ω(t), (µ, υ)(t, ω(t), z1, z2)) + h1(t, ω(t), (µ, υ)(t, ω(t), z1, z2));

H2(t, ω(t), z2, (µ, υ)(t, ω(t), z1, z2))

=z2σ
−1(t, ω(t)) f (t, ω(t), (µ, υ)(t,X(t), z1, z2)) + h2(t, ω(t), (µ, υ)(t, ω(t), z1, z2)),

(3.1.55)

for 0 ≤ t ≤ T, ω ∈ Ω, z1 andz2 in Rd, andA1 ×A2-valued measurable functions (µ, υ).
From Assumption 3.1.1 (3) and Assumption 3.1.2 (2), the Hamiltonians are liner inz1

andz2, and polynomial in sup
0≤s≤t
|ω(s)|. To be more specific, we have

|Hi(t, ω(t), z1, z2, (µ, υ)(t, ω(t), z1, z2))| ≤ A|zi | +Crwd

(

1+ sup
0≤s≤t
|ω(s)|2p

)

, (3.1.56)

for i = 1, 2, all 0≤ t ≤ T,ω ∈ Ω, z1 andz2 in Rd, andA1×A2-valued measurable func-
tions (µ, υ). The growth rates of the Hamiltonians (3.1.55) satisfy Assumption 3.3.1 (2)
for the driver of the BSDE (3.3.2). With all other assumptionon the coefficients also
satisfied, by Theorem 3.3.2, there exists a solution (Yµ,υ,Zµ,υ,Kµ,υ) to the following
equation


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



















Yµ,υ

1 (t) =ξ1 +

∫ T

t
H1(s,X(s),Zµ,υ1 (s), (µ, υ)(s,X(s),Zµ,υ1 (s),Zµ,υ2 (s)))ds

−

∫ T

t
Zµ,υ1 (s)dBs+ Kµ,υ

1 (T) − Kµ,υ

1 (t),

Yµ,υ

1 (t) ≥ L1(t), 0 ≤ t ≤ T;
∫ T

0
(Yµ,υ

1 (t) − L1(t))dKµ,υ

1 (t) = 0;

Yµ,υ

2 (t) =ξ2 +

∫ T

t
H2(s,X(s),Zµ,υ2 (s), (µ, υ)(s,X(s),Zµ,υ1 (s),Zµ,υ2 (s)))ds

−

∫ T

t
Zµ,υ2 (s)dBs+ Kµ,υ

2 (T) − Kµ,υ

2 (t),

Yµ,υ

2 (t) ≥ L2(t), 0 ≤ t ≤ T;
∫ T

0
(Yµ,υ

2 (t) − L2(t))dKµ,υ

2 (t) = 0.

(3.1.57)

Assumption 3.1.4 (Isaacs’ condition) There exist deterministic functionsµ∗ : [0,T] ×
R

d × Rd × Rd → A1 andυ∗ : [0,T] × Rd × Rd × Rd → A2, such that

H1(t, x, z1, (µ∗, υ∗)(t, x, z1, z2)) ≥ sup
z̄1,z̄2∈R

d

H1(t, x, z1, (µ, υ∗)(t, x, z̄1, z̄2));

H2(t, x, z2, (µ∗, υ∗)(t, x, z1, z2)) ≥ sup
z̄1,z̄2∈R

d

H2(t, x, z2, (µ∗, υ)(t, x, z̄1, z̄2)),
(3.1.58)

for all 0 ≤ t ≤ T, x, z1 and z2 in Rd, and all µ : [0,T] × Rd × Rd × Rd → A1 and
υ : [0,T] × Rd × Rd × Rd → A2.
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Associated with coefficients f andσ of the state processX(·) and with the rewardsh,
L(·) andξ, the admissible setU × V = {(u, v)} of Markovian controls that observe
volatilities are defined as the collection of all

(ut, vt) = (µ, υ)(t,X(t),Zµ,υ1 (t),Zµ,υ2 (t)), (3.1.59)

for measurable functionsµ : [0,T]×Rd×Rd×Rd → A1 andυ : [0,T]×Rd×Rd×Rd →

A2. In particular,

(u∗t , v
∗
t ) = (µ∗, υ∗)(t,X(t),Zµ

∗,υ∗

1 (t),Zµ
∗ ,υ∗

2 (t)), (3.1.60)

(ut, v
∗
t ) = (µ, υ∗)(t,X(t),Zµ,υ

∗

1 (t),Zµ,υ
∗

2 (t)), (3.1.61)

and
(u∗t , vt) = (µ∗, υ)(t,X(t),Zµ

∗,υ

1 (t),Zµ
∗ ,υ

2 (t)). (3.1.62)

Assumption 3.1.4 implies Isaacs’ condition, Assumption 3.1.3. Then we reach the
same statements as in Theorem 3.1.1, the only difference being (Yu,v,Zu,v,Ku,v) re-
placed by (Yµ,υ,Zµ,υ,Kµ,υ), and BSDE (3.1.23) replaced by BSDE (3.1.57).

In fact, by Theorem 3.3.1, there exist deterministic measurable mappingsβµ,υ1 and
β
µ,υ

2 : [0,T] × Rd → Rd, such thatZµ,υ1 (t) = β
µ,υ

1 (t,X(t)), andZµ,υ2 (t) = β
µ,υ

2 (t,X(t)),
for all 0 ≤ t ≤ T. Hence (3.1.59) becomes

(ut, vt) = (µ, υ)(t,X(t), βµ,υ1 (t,X(t)), βµ,υ2 (t,X(t))), (3.1.63)

a pair of Markovian controls.

3.1.3 Rewards terminated by either player

In this subsection, Game 3.1.2 is studied. One player’s timeto quit the game is deter-
mined by the conjunction of both players’ stopping rules. Assoon as one player stops,
the Game 3.1.2 is terminated. When quitting the game, playerI receives reward

R1
0(τ, ρ, u, v) =

∫ τ∧ρ

0
h1(s, u, v)ds+























L1(τ), if player 1 stops first;

U1(ρ), if player 2 stops first;

ξ1, if neither stops before timeT;

(3.1.64)

whereas player II receives reward

R2
0(τ, ρ, u, v) =

∫ τ∧ρ

0
h2(s, u, v)ds+























U2(τ), if player 1 stops first;

L2(ρ), if player 2 stops first;

ξ2, if neither stops before timeT.

(3.1.65)

Optimal controls for Game 3.1.2 will again be the pair (u∗, v∗) from Isaacs’ condition,
Assumption 3.1.3. The interaction of stopping rules seems complicated. Let us tem-
porarily ignore the controls and focus on reducing the game of stopping to a tractable
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formulation.

For any fixed stopping rulesτ0
t andρ0

t in S (t,T), let player I choose stopping rule
τt = τ1

t from S (t,T) and player II chooseρt = ρ1
t from S (t,T) to maximize their

respective rewards

R1
t (τt, ρ

0
t , u, v)

:=
∫ τt∧ρ

0
t

t
h1(s,X, us, vs)ds+ L1(τt)1{τt<ρ

0
t }
+ U1(ρ0

t )1{ρ0
t ≤τt<T} + ξ11{τt∧ρ

0
t =T};

R2
t (τ0

t , ρt, u, v)

:=
∫ τ0

t ∧ρt

t
h2(s,X, us, vs)ds+ L2(ρt)1{ρt<τ

0
t }
+ U2(τ0

t )1{τ0
t ≤ρt<T} + ξ21{τ0

t ∧ρt=T},

(3.1.66)

in conditionalPu,v-expectations. With a little abuse of the notationU1(·) andU2(·) as
in Assumption 3.1.2 (1), rewrite

U1(ρ0
t )1{ρ0

t ≤τt<T} + ξ11{τt∧ρ
0
t =T} = U1(ρ0

t )1{τt≥ρ
0
t }

;

U2(τ0
t )1{τ0

t ≤ρt<T} + ξ21{τ0
t ∧ρt=T} = U2(τ0

t )1{ρt≥τ
0
t }
.

(3.1.67)

But suggested by (3.1.66), on{τt ≥ ρ0
t }, player I’s running reward is cut off at time

ρ0
t , and terminal reward remainsU1(ρ0

t ) anyway, so he will not profit from sticking to
the game after timeρ0

t . Symmetrically, player II will not profit from stopping after τ0
t .

Because of the indifference to late stopping, maximizing expected rewards (3.1.66) is
equivalent to choosingτt = τ

1
t from S (t, ρ0

t ) andρt = ρ
1
t from S (t, τ0

t ) to maximize
the conditionalPu,v-expectations of

∫ τt∧ρ
0
t

t
h1(s,X, us, vs)ds+ L1(τt)1{τt<ρ

0
t }
+ U1(ρ0

t )1{τt=ρ
0
t }

;

∫ τ0
t ∧ρt

t
h2(s,X, us, vs)ds+ L2(ρt)1{ρt<τ

0
t }
+ U2(τ0

t )1{ρt=τ
0
t }
.

(3.1.68)

In the spirit of Nash’s 1949 original definition of equilibrium, the equilibrium stopping
rules (τ∗t , ρ

∗
t ) of Game 3.1.2 is a fixed point of the mapping

Γ :S (t,T) ×S (t,T)→ S (t,T) ×S (t,T),

(τ0
t , ρ

0
t ) 7→ (τ1

t , ρ
1
t ).

(3.1.69)

To show existence of equilibrium stopping rules, it suffices to prove a.e. convergence
of iteration viaΓ, starting from a certain initial stopping rule.

This reduction will solve Game 3.1.2 by approximating it with a sequence of much
simpler optimization problems. The optimization is in a simplified form of Game
3.1.1, hence it can be associated with a BSDE with reflecting barrier. The admissi-
ble setU × V of controls are still closed loop. At every step of the iteration, there
is no interaction in either controls or stopping. Without interaction, the resulting two-
dimensional BSDE for the players consists in fact of two separate one-dimensional
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equations. Hence the comparison theorem for one-dimensional equations applies to
the derivation of the pair of equilibrium controls (u∗, v∗) from Assumption 3.1.3 at ev-
ery step of the iteration. So (u∗, v∗) should also be equilibrium in the limit. The first
time when the value process hits the lower reflecting boundary is the optimal time to
stop.

Lemma 3.1.1 Let the players’ rewards be as in (3.1.68), the value processV(·) as in
(3.1.15), and(u∗, v∗) as in Isaacs’ condition, Assumption 3.1.3. The triplet(Yu,v,Zu,v,Ku,v)
satisfies Yu,v(·) ∈ M2(2; 0,T), Zu,v(·) ∈ L2(2×d; 0,T), and Ku,v(·) continuous increasing
inM2(2; 0,T) solves


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
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














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





Yu,v
1 (t) =U1(ρ0

t ) +
∫ ρ0

t

t
H1(s,X,Zu,v

1 (s), us, vs)ds−
∫ ρ0

t

t
Zu,v

1 (s)dBs

+ Ku,v
1 (ρ0

t ) − Ku,v
1 (t), 0 ≤ t ≤ ρ0

t ;

Yu,v
1 (t) ≥ L1(t), t ∈ [0, ρ0

t ];
∫ ρ0

t

0
(Yu,v

1 (t) − L1(t))dKu,v
1 (t) = 0;

Yu,v
2 (t) =U2(τ0

t ) +
∫ τ0

t

t
H2(s,X,Zu,v

2 (s), us, vs)ds−
∫ τ0

t

t
Zu,v

2 (s)dBs

+ Ku,v
2 (ρ0

t ) − Ku,v
2 (t), 0 ≤ t ≤ τ0

t ;

Yu,v
2 (t) ≥ L2(t), t ∈ [0, τ0

t ];
∫ τ0

t

0
(Yu,v

2 (t) − L2(t))dKu,v
2 (t) = 0.

(3.1.70)

For player I, choose the stopping timeτ1
t := τ∗t

(

Yu,v
1 (·); ρ0

t

)

, and for player II, choose

the stopping timeρ1
t := ρ∗t

(

Yu,v
2 (·); τ0

t

)

, where the stopping rulesτ∗ andρ∗ are defined

in (3.1.24) and (3.1.25). The quadruplet(τ1, ρ1, u∗, v∗) is optimal in the sense that

E
u∗,v∗ [R1

t (τ1
t (u∗, v∗), ρ0

t , u
∗, v∗)|Ft] ≥ Eu,v∗ [R1

t (τt, ρ
0
t , u, v

∗)|Ft], ∀τt ∈ S (t, ρ0
t ), ∀u ∈ U ;

E
u∗,v∗ [R2

t (τ0
t , ρ

1
t (u∗, v∗), u∗, v∗)|Ft] ≥ Eu∗ ,v[R2

t (τ0
t , ρt, u

∗, v)|Ft], ∀ρt ∈ S (t, τ0
t ), ∀v ∈ V .

(3.1.71)

Furthermore, Vi(t) = Yu∗ ,v∗

i (t), 0 ≤ t ≤ T, i = 1, 2.

Proof. Apply Theorem 3.1.1 to each individual player. �

The following arguments proceed forhi ≥ 0. If in generalhi ≥ −c bounded from be-
low, then the arguments should be tailored by shifting upwards the rewards and value
processes.

Now we start an iteration viaΓ, defined by (3.1.69), withτ0
t = ρ0

t = T, andY0
1(·) =

Y0
2(·) = +∞. Put the controls (u, v) = (u∗, v∗). As in Lemma 3.1.1,τ1 andρ1 are the

two players’ optimal stopping rules when their respective terminal times areρ0 and
τ0. In the language of the fixed point formulation, (τ1

t , ρ
1
t ) = Γ(τ0

t , ρ
0
t ). Apparently,

τ1
t ∨ ρ

1
t ≤ τ

0
t ∧ ρ

0
t = T. Assume

τn
t ∨ ρ

n
t ≤ τ

n−1
t ∧ ρn−1

t (3.1.72)
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for n. Denoteτn+1
t andρn+1

t as their stopping rules that attain the superema in

Yn+1
1 (t) = sup

τt∈S (t,ρn
t )
E

u∗ ,v∗
[
∫ τt∧ρ

n
t

t
h1(s,X, u

∗
s, v
∗
s)ds+ L1(τt)1{τt<ρ

n
t }
+ U1(ρn

t )1{τt=ρ
n
t }

∣

∣

∣

∣

∣

∣

Ft

]

(3.1.73)
and

Yn+1
2 (t) = sup

ρt∈S (t,τn
t )
E

u∗,v∗
[∫ τn

t ∧ρt

t
h2(s,X, u∗s, v

∗
s)ds+ L2(ρt)1{ρt<τ

n
t }
+ U2(τn

t )1{ρt=τ
n
t }

∣

∣

∣

∣

∣

∣

Ft

]

,

(3.1.74)
given the two players’ respective terminal times areρn and τn, then (τn+1

t , ρn+1
t ) =

Γ(τn
t , ρ

n
t ) in the fixed point language. There exists a pair of stopping rules (τn+1, ρn+1)

that attains the suprema in (3.1.73) and (3.1.74), by replacing the notations (τ0, ρ0)
with (τn, ρn) and (τ1, ρ1) with (τn+1, ρn+1) in Lemma 3.1.1. According to Lemma 3.1.1,
together with (3.1.9) and (3.1.19), forn = 1, 2, · · · , the processesYn(·) ∈ M2(2; 0,T),
Zn(·) ∈ L2(2× d; 0,T), andKn(·) continuous increasing inM2(2; 0,T) satisfy


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





dYn
1(s) = − H1(s,X,Zn

1(s), u∗s, v
∗
s)ds+ Zn

1(s)dBs− dKn
1(s)

= − h1(s,X, u∗s, v
∗
s)ds+ Zn

1(s)dBu∗,v∗
s − dKn

1(s), t ≤ s≤ ρn−1
t ;

Yn
1(ρn−1

t ) =U1(ρn−1
t );

dYn
2(s) = − H2(s,X,Zn

2(s), u∗s, v
∗
s)ds+ Zn

2(s)dBs− dKn
2(s)

= − h2(s,X, u∗s, v
∗
s)ds+ Zn

2(s)dBu∗,v∗
s − dKn

2(s), t ≤ s≤ τn−1
t ;

Yn
2(τn−1

t ) =U2(τn−1
t ).

(3.1.75)

IntegratingdYn
1 fromρn

t toρn−1
t , anddYn

2 fromτn
t to τn−1

t , then takingPu∗ ,v∗−expectations,
and conditioning onFρn

t
andFτn

t
, respectively, we obtain

Yn
1(ρn

t ) =Eu∗ ,v∗
[

U1(ρn−1
t ) +

∫ ρn−1
t

ρn
t

h1(s,X, u∗s, v
∗
s)ds−

∫ ρn−1
t

ρn
t

Zn
1(s)dBu∗,v∗

s

+ Kn
1(ρn−1) − Kn

1(ρn
t )

∣

∣

∣

∣

∣

∣

Fρn
t

]

≥Eu∗ ,v∗ [U1(ρn−1
t )|Fρn

t
] ≥ Eu∗,v∗ [U1(ρn

t )|Fρn
t
] = U1(ρn

t );

Yn
2(τn

t ) =Eu∗ ,v∗
[

U2(τn−1
t ) +

∫ τn−1
t

τn
t

h2(s,X, u∗s, v
∗
s)ds−

∫ τn−1
t

τn
t

Zn
2(s)dBu∗,v∗

s

+ Kn
2(τn−1

t ) − Kn
2(τn

t )

∣

∣

∣

∣

∣

∣

Fτn
t

]

≥Eu∗ ,v∗ [U2(τn−1
t )|Fτn

t
] ≥ Eu∗,v∗ [U2(τn

t )|Fτn
t
] = U2(τn

t ).

(3.1.76)

The first pair of inequalities in the above two entries come from the nonnegativity
assumptions ofh1 andh2, and the fact thatK1(·),K2(·) are increasing processes, once
more with the help of the same localization technique in the proof of Theorem 3.1.1.
The second pair of inequalities come from the induction assumptionτn

t ∨ ρ
n
t ≤ τ

n−1
t ∧

ρn−1
t , and the monotonicity assumption ofU(·) in Assumption 3.1.2 (1). One can get
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rid of conditional expectations as in the final pair of equalities, because by Assumption
3.1.2 (1) the processU(·) is progressively measurable with respect to the filtration
{Ft}0≤t≤T . But U1(ρn

t ) = Yn+1
1 (ρn

t ), andU2(τn
t ) = Yn+1

2 (τn
t ), henceYn+1

1 (ρn
t ) ≤ Yn

1(ρn
t ),

and Yn+1
2 (τn

t ) ≤ Yn
2(τn

t ). By the comparison theorem (Theorem 3.2.2 and Theorem
3.3.3) in dimension one,Yn+1

1 (s) ≤ Yn
1(s), for all t ≤ s ≤ ρn

t , andYn+1
2 (s) ≤ Yn

2(s), for
all t ≤ s ≤ τn

t . From Lemma 3.1.1, for alln = 1, 2, · · · , the optimal stopping times
τn+1

t := τ∗t
(

Yn+1
1 (·); ρn

t

)

≤ ρn
t , andρn+1

t := ρ∗t
(

Yn+1
2 (·); τn

t

)

≤ τn
t , where the stopping rules

τ∗ andρ∗ are defined in (3.1.24) and (3.1.25). ThenYn+1(·) ≤ Yn(·) impliesτn+1
t ≤ τn

t ,
andρn+1

t ≤ ρn
t . Finally, we have finished the (n+ 1)th step of mathematical induction

by concluding
τn+1

t ∨ ρn+1
t ≤ τn

t ∧ ρ
n
t . (3.1.77)

The sequences{Yn(·)}n, {τn
t }n and{ρn

t }n from the induction are all decreasing, thus have
pointwise limitsY∗(·), τ∗t andρ∗t .

By analogy with the argument used to prove Theorem 3.1.1, we have

Yn
1(t) ≥

∫ τt∧ρ
n−1
t

t
h1(s,X, us, v

∗
s)ds+ L1(τt)1{τt<ρ

n
t }
+ U1(ρn−1

t )1{τt=ρ
n−1
t }

+

∫ τt∧ρ
n−1
t

t
Zn

1(s)dBu,v∗
s ;

Yn
2(t) ≥

∫ τn−1
t ∧ρt

t
h2(s,X, u∗s, vs)ds+ L2(ρt)1{ρt<τ

n−1
t }
+ U2(τn−1

t )1{ρt=τ
n−1
t }

+

∫ ρt∧τ
n−1
t

t
Zn

2(s)dBu∗,v
s .

(3.1.78)

The inequalities in (3.1.78) become equalities, ifτt = τ
n
t , u = u∗ andρt = ρ

n
t , v = v∗.

First taking corresponding conditional expectations of (3.1.78) with respect toFt, the
stochastic integrals vanish still by the localization technique as in proof of Theorem
3.1.1. Then lettingn → ∞, and using the equivalence between maximizing (3.1.66)
and maximizing (3.1.68), we arrive at

Y∗1(t) = Eu∗ ,v∗ [R1
t (τ
∗
t , ρ
∗
t , u
∗, v∗)|Ft] ≥ E

u,v∗ [R1
t (τt, ρ

∗, u, v∗)|Ft], ∀τt ∈ S (t,T), ∈ U ;

Y∗2(t) = Eu∗ ,v∗ [R2
t (τ
∗
t , ρ
∗
t , u
∗, v∗)|Ft] ≥ Eu∗ ,v[R1

t (τ∗t , ρt, u
∗, v)|Ft], ∀ρt ∈ S (t,T), ∈ V ,

(3.1.79)

with rewardsR1 andR2 as in (3.1.66).

The inductive procedure produces a Nash equilibrium (τ∗, ρ∗, u∗, v∗) for Game 3.1.2.
The equilibrium controls (u∗, v∗) come from Isaacs’ condition, Assumption 3.1.3. The
equilibrium stopping rules (τ∗, ρ∗) are the limits of the iterative sequence of optimal
stopping rules, thus provide a fixed point of the mappingΓ defined in (3.1.69).

Theorem 3.1.2 Under Assumptions 3.1.1, 3.1.2 and 3.1.3, if h is bounded from below,
then the limit(τ∗, ρ∗, u∗, v∗) from the iteration is an equilibrium point of Game 3.1.2.
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Remark 3.1.3 Game 3.1.2 always has a trivial equilibrium(t, t, 0, 0). The iterative
procedure in this section can be numerically implemented todetermine if the limiting
equilibrium point(τ∗, ρ∗, u∗, v∗) is trivial or not.

3.2 A multidimensional reflected BSDE with Lipschitz
growth

Starting from this section, we solve multidimensional BSDEs with reflecting barriers,
the type of BSDEs associated with Game 3.1.1, and provide twouseful properties of
the equations, the comparison theorem in dimension one and the theorem about contin-
uous dependence of the solution on the terminal values. The discussions on the BSDEs
are postponed until here, only to finish the game part first. Proofs of results to be stated
from now on in this paper do not depend on any earlier arguments.

This section assumes the following the following Lipschitzgrowth condition and inte-
grability conditions on the parameters of the equations.

Assumption 3.2.1 (1) The driver g is a mapping g: [0,T]×Rm×m×d → Rm, (t, y, z) 7→
g(t, y, z). For every fixed y∈ Rm and z∈ Rm×d, the process{g(t, y, z)}0≤t≤T is {Ft}0≤t≤T -
predictable. For all t∈ [0,T], g(t, y, z) is uniformly Lipschitz in y and z, i.e. there exists
a constant b> 0, such that

|g(t, y, z) − g(t, ȳ, z̄)| ≤ b(||y− ȳ|| + ||z− z̄||), (3.2.1)

for all t ∈ [0,T], y ∈ Rm and z∈ Rm×d. Furthermore,

E

[ ∫ T

0
g(t, 0, 0)2dt

]

< ∞. (3.2.2)

(2) The random variableξ is FT -measurable and square-integrable. The lower reflect-
ing boundary L is continuous, progressively measurable, and satisfies

E

[

sup
[0,T]

L+(t)2

]

< ∞. (3.2.3)

Also, L(T) ≤ ξ, a.e. onΩ.

Under Assumption 3.2.1, this section proves existence and uniqueness of solution
(Y,Z,K) to the following BSDE
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

Y(t) = ξ +
∫ T

t
g(s,Y(s),Z(s))ds−

∫ T

t
Z(s)dBs+ K(T) − K(t);

Y(t) ≥ L(t), 0 ≤ t ≤ T,
∫ T

0
(Y(t) − L(t))dK(t) = 0,

(3.2.4)
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in the spaces

Y(·) = (Y1(·), · · · ,Ym(·))′ ∈ M2(m; 0,T)

=

{

m-dimensional RCLL predictable processφ(·) s.t.E

[

sup
[0,T]

φ2
t

]

≤ ∞

}

;

Z(·) = (Z1(·), · · · ,Zm(·))′ ∈ L2(m× d; 0,T)

=

{

m× d-dimensional RCLL predictable processφ(·) s.t.E

[ ∫ T

0
φ2

t dt

]

≤ ∞

}

;

K(·) = (K1(·), · · · ,Km(·))′: continuous, increasing process inM2(m; 0,T),
(3.2.5)

where the positive integerm is the dimension of the equation. The backward equation
and the reflecting condition in (3.2.4) should be interpreted component-wise. It means
that, for everyi = 1, · · · ,m, in theith dimension,
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Yi(t) = ξi +

∫ T

t
gi(s,Y(s),Z(s))ds−

∫ T

t
Zi(s)dBs+ Ki(T) − Ki(t);

Yi(t) ≥ Li(t), 0 ≤ t ≤ T,
∫ T

0
(Yi(t) − Li(t))dKi(t) = 0.

(3.2.6)

The processYi(·) is motivated by the Brownian noiseB(·) as the ”fuel”, whose amount
is determined by a ”control”Zi(·). The drivergi leadsYi(·) towards the ”final desti-
nation” ξi . Whenever theith componentYi(·) drops to the lower reflecting boundary
Li(·), it receives a forceKi(·) that kicks it upwards. WhenYi(·) stays above levelLi(·),
the forceKi(·) does not apply. The processKi(·) stands for the minimum cumulative
exogenous energy required to keepYi(·) above levelLi(·). Them equations compose a
system ofm ”vehicles” whose ”drivers” track each other. For notational simplicity, the
vector form (3.2.4) is used as a shorthand.

Lemma 3.2.1 For any processes(Y0(·),Z0(·)) ∈ L2(m; 0,T) × L2(m× d; 0,T), there
exist unique(Y1(·),Z1(·)) ∈ M2(m; 0,T) × L2(m× d; 0,T), and K1(·) ∈ M2(m; 0,T),
such that







































dY1(t) = −g(t,Y0(t),Z0(t))dt+ Z1(t)dBt − dK1(t), 0 ≤ t ≤ T;

Y1(T) = ξ;

Y1(t) ≥ L(t), 0 ≤ t ≤ T,
∫ T

0
(Y1(t) − L(t))dK1(t) = 0.

(3.2.7)

Proof. For any i = 1, · · · ,m, in the ith dimension, by Corollary 3.7 of El Karoui,
Kapoudjian, Pardoux, Peng and Quenez (1997) [19], there exists a unique solution
(Y1

i (·),Z1
i (·)) ∈ M2(1; 0,T) × L2(d; 0,T), and a continuous, increasing processK1

i (·) ∈
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M
2(1; 0,T), to the one-dimensional reflected BSDE







































dY1
i (t) = −gi(t,Y

0(t),Z0(t))dt+ Z1
i (t)dBt − dK1

i (t), 0 ≤ t ≤ T;

Y1
i (T) = ξi ;

Y1
i (t) ≥ Li(t), 0 ≤ t ≤ T,

∫ T

0
(Y1

i (t) − Li(t))dK1
i (t) = 0.

(3.2.8)

The processesY1(·) := (Y1
1(·), · · · ,Y1

m(·))′, Z1(·) := (Z1
1(·), · · · ,Z1

m(·))′, andK1(·) :=
(K1

1(·), · · · ,K1
m(·))′ form the desired triplet. �

To prove existence and uniqueness of the solution to the multi-dimensional BSDE
(3.2.4) with reflecting barrier, it suffices to show that the mapping

Λ :L2(m; 0,T) × L2(m× d; 0,T)→ L2(m; 0,T) × L2(m× d; 0,T),

(Y0,Z0) 7→ (Y1,Z1),
(3.2.9)

is a contraction.

Theorem 3.2.1 The mappingΛ is a contraction fromL2(m; 0,T) × L2(m× d; 0,T) to
L

2(m; 0,T) × L2(m× d; 0,T).

Proof. For a progressively measurable processφ(·), the norm||φ||2 :=
√

E

[ ∫ T

0
φ2

t dt
]

is

equivalent to the norm||φ||2,β :=
√

E

[ ∫ T

0
eβtφ2

t dt
]

. We prove the contraction statement

under the norm|| · ||2,β. Suppose (Y0(·),Z0(·)) and (Ȳ0(·), Z̄0(·)) are both inM2(m; 0,T)×
L

2(m×d; 0,T). Denote (Y1(·),Z1(·)) = Λ(Y0(·),Z0(·)) and (̄Y1(·), Z̄1(·)) = Λ(Ȳ0(·), Z̄0(·)).
Applying Itô’s rule toeβt(Y1(t) − Ȳ1(t))2, and integrating the derivative fromt to T,

eβt(Y1(t) − Ȳ1(t))2 + β

∫ T

t
eβs(Y1(s) − Ȳ1(s))2ds+

∫ T

t
eβs(Z1(s) − Z̄1(s))2ds

=2
∫ T

t
eβs(Y1(s) − Ȳ1(s))(g(s,Y0(s),Z0(s)) − g(s, Ȳ0(s), Z̄0(s)))ds

+ 2
∫ T

t
eβs(Y1(s) − Ȳ1(s))(Z1(s) − Z̄1(s))ds+ 2

∫ T

t
eβs(Y1(s) − Ȳ1(s))(dK1(s) − dK̄1(s))

+ 2
∫ T

t
eβs(Y1(s) − Ȳ1(s))(Z1(s) − Z̄1(s))dBs.

(3.2.10)

Becauseg is uniformly Lipschitz,

|g(s,Y0(s),Z0(s)) − g(s, Ȳ0(s), Z̄0(s))| ≤ b|Y0(s) − Ȳ0(s)| + b|Z0(s) − Z̄0(s)|. (3.2.11)

For every constantα1 > 0,

2eβs(Y1(s) − Ȳ1(s))(g(s,Y0(s),Z0(s)) − g(s, Ȳ0(s), Z̄0(s)))

≤α1eβs(Y1(s) − Ȳ1(s))2 +
2b2

α1
eβs(Y0(s) − Ȳ0(s))2 +

2b2

α1
eβs(Z0(s) − Z̄0(s))2.

(3.2.12)
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For every constantα2 > 0,

2
∫ T

t
eβs(Y1(s) − Ȳ1(s))(Z1(s) − Z̄1(s))ds

≤α2eβs(Y1(s) − Ȳ1(s))2 +
1
α2

eβs(Z1(s) − Z̄1(s))2.

(3.2.13)

Since, by definition of the mappingΛ, Y1(·) ≥ L(·), andȲ1(·) ≥ L(·), (Y1(·)−L(·))dK1(·) =
(Ȳ1(·) − L(·))dK̄1(·) ≡ 0, andK1(·) andK̄1(·) are increasing, we have,

∫ T

t
eβs(Y1(s) − Ȳ1(s))(dK1(s) − dK̄1(s))

=

∫ T

t
eβs((Y1(s) − L(s)) − (Ȳ1(s) − L(s)))(dK1(s) − dK̄1(s))

≤ −

∫ T

t
eβs((Y1(s) − L(s))dK̄1(s) −

∫ T

t
eβs(Ȳ1(s) − L(s))dK1(s)

≤0.

(3.2.14)

Combining (3.2.10), (3.2.12), (3.2.13) and (3.2.14), letting t = 0, and taking expecta-
tion on both sides of the inequality,

(β − α1 − α2)E

[ ∫ T

t
eβs(Y1(s) − Ȳ1(s))2ds

]

+

(

1−
1
α2

)

E

[ ∫ T

t
eβs(Z1(s) − Z̄1(s))2ds

]

≤
2b2

α1
E

[
∫ T

t
eβs(Y0(s) − Ȳ0(s))2ds

]

+
2b2

α1
E

[
∫ T

t
eβs(Z0(s) − Z̄0(s))2ds

]

.

(3.2.15)

Becauseα1, α2 andβ are arbitrary, we may letα1 = 8b2, α2 = 2, andβ = α1+α2+
1
2 =

8b2 + 5
2, then from (3.2.15),

||Y1 − Ȳ1||22,β + ||Z
1 − Z̄1||22,β ≤

1
2
||Y0 − Ȳ0||22,β +

1
2
||Z0 − Z̄0||22,β. (3.2.16)

The mappingΛ is indeed a contraction. �

Proposition 3.2.1 The BSDE (3.2.4) with reflecting barrier has a unique solution in
M

2(m; 0,T) × L2(m× d; 0,T).

Proof. The solution is the unique fixed-point, say (Y(·),Z(·)), of the contractionΛ.
Since (Y(·),Z(·)) ∈ L2(m; 0,T) × L2(m× d; 0,T), (Y(·),Z(·)) = Λ(Y(·),Z(·)) is also in
M

2(m; 0,T) × L2(m× d; 0,T) by Lemma 3.2.1. �

Theorem 3.2.2 (Comparison Theorem, El Karoui, Kapoudjian, Pardoux, Pengand
Quenez (1997) [19])
Suppose(Y,Z,K) solves (3.2.4) with parameter set(ξ, g, L), and(Ȳ, Z̄, K̄) solves (3.2.4)
with parameter set(ξ̄, ḡ, L̄). Let dimension of the equations be m= 1. Under Assump-
tion 3.2.1, except that the uniform Lipschitz condition only needed for either g or̄g, if
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(1) ξ ≤ ξ̄, a.e.;
(2) g(t, y, z) ≤ ḡ(t, y, z), a.e.(t, ω) ∈ [0,T] ×Ω, ∀(y, z) ∈ R × Rd; and
(3) L(t) ≤ L̄(t), a.e.(t, ω) ∈ [0,T] × Ω,
then

Y(t) ≤ Ȳ(t), a.e.(t, ω) ∈ [0,T] ×Ω. (3.2.17)

Theorem 3.2.3 (Continuous Dependence Property)
Under Assumption 3.2.1, suppose that(Y,Z,K) solves RBSDE (3.2.4), and that(Ȳ, Z̄, K̄)
solves



































Ȳ(t) = ξ̄ +
∫ T

t
g(s, Ȳ(s), Z̄(s))ds−

∫ T

t
Z̄(s)dBs+ K̄(T) − K̄(t);

Ȳ(t) ≥ L(t), 0 ≤ t ≤ T,
∫ T

0
(Ȳ(t) − L(t))dK̄(t) = 0,

(3.2.18)

then there exists a constant number C, such that for all0 ≤ t ≤ T,

E[(Y(t) − Ȳ(t))2] + E

[ ∫ T

0
(Y(s) − Ȳ(s))2ds

]

+ E

[ ∫ T

0
(Z(s) − Z̄(s))2ds

]

+ E[(K(t) − K̄(t))2]

≤CE[(ξ − ξ̄)2].

(3.2.19)

Proof. Applying Itô’s rule toeβt(Y(t)−Ȳ(t))2, integrating fromt to T, and then repeating
the methods in proof of Theorem 3.2.1,

eβt(Y(t) − Ȳ(t))2 + β

∫ T

t
eβs(Y(s) − Ȳ(s))2ds+

∫ T

t
eβs(Z(s) − Z̄(s))2ds

=eβT(ξ − ξ̄)2 + 2
∫ T

t
eβs(Y(s) − Ȳ(s))(g(s,Y(s),Z(s)) − g(s, Ȳ(s), Z̄(s)))ds

+ 2
∫ T

t
eβs(Y(s) − Ȳ(s))(Z(s) − Z̄(s))ds+ 2

∫ T

t
eβs(Y(s) − Ȳ(s))(dK(s) − dK̄(s))

+ 2
∫ T

t
eβs(Y(s) − Ȳ(s))(Z(s) − Z̄(s))dBs

≤eβT(ξ − ξ̄)2 + (α1 + α2 + b)
∫ T

t
eβs(Y(s) − Ȳ(s))2ds

+

(

b2

α1
+

1
α2

) ∫ T

t
eβs(Z(s) − Z̄(s))2ds+ 2

∫ T

t
eβs(Y(s) − Ȳ(s))(Z(s) − Z̄(s))dBs.

(3.2.20)
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Rearranging the terms in (3.2.20), and taking expectations,

eβt
E[(Y(t) − Ȳ(t))2] + (β − b− α1 − α2)E

[ ∫ T

t
eβs(Y(s) − Ȳ(s))2ds

]

+

(

1−
b2

α1
−

1
α2

)

E

[ ∫ T

t
eβs(Z(s) − Z̄(s))2ds

]

≤eβT
E[(ξ − ξ̄)2].

(3.2.21)

In (3.2.21), lettingα1 = 4b2, α2 = 4, andβ = b+ α1 + α2 +
1
2 = 4b2 + b+ 9

2 gives

eβt
E[(Y(t) − Ȳ(t))2] +

1
2
E

[ ∫ T

t
eβs(Y(s) − Ȳ(s))2ds

]

+
1
2
E

[ ∫ T

t
eβs(Z(s) − Z̄(s))2ds

]

≤eβT
E[(ξ − ξ̄)2], for all 0 ≤ t ≤ T.

(3.2.22)

Hence both

E[(Y(t) − Ȳ(t))2] ≤ eβT
E[(ξ − ξ̄)2], for all 0 ≤ t ≤ T, (3.2.23)

and

E

[
∫ T

0
(Y(s) − Ȳ(s))2ds

]

+ E

[
∫ T

0
(Z(s) − Z̄(s))2ds

]

≤ 2eβT
E[(ξ − ξ̄)2] (3.2.24)

hold true.
It remains to estimate theL2-norm of (K(t) − K̄(t)). IntegratingdY anddȲ from 0 to t
gives

K(t) = Y(0)− Y(t) −
∫ t

0
g(s,Y(s),Z(s))ds+

∫ t

0
Z(s)dBs, (3.2.25)

and

K̄(t) = Ȳ(0)− Ȳ(t) −
∫ t

0
g(s, Ȳ(s), Z̄(s))ds+

∫ t

0
Z̄(s)dBs. (3.2.26)

Then, there exists a constant numberC1, such that

(K(t) − K̄(t))2

≤C1

(

(Y(0)− Ȳ(0))2 + (Y(t) − Ȳ(t))2 + t
∫ t

0
(g(s,Y(s),Z(s)) − g(s, Ȳ(s), Z̄(s)))2ds

+

∫ t

0
(Z(s) − Z̄(s))2dBs

)

.

(3.2.27)
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Taking expectation on both sides of (3.2.27), by Lipschitz condition Assumption 3.2.1
and Itô’s isometry, for all 0≤ t ≤ T,

E[(K(t) − K̄(t))2]

≤C1

(

E[(Y(0)− Ȳ(0))2] + E[(Y(t) − Ȳ(t))2] + 2Tb2
E

[ ∫ T

0
(Y(t) − Ȳ(t))2dt

]

+ (2Tb2 + 1)E

[∫ T

0
(Z(t) − Z̄(t))2dt

])

≤4C1(Tb2 + 1)eβT
E[(ξ − ξ̄)2],

(3.2.28)

last inequality from (3.2.23) and (3.2.24). �

3.3 Markovian system with linear growth rate

This section shows existence of the solution to the multidimensional BSDE with re-
flecting barrier within a Markovian framework. The growth rate of the forward equa-
tion is assumed polynomial in the state processX, and linear in both the value process
Y and the volatility processZ. The comparison theorem in dimension one and continu-
ous dependence property of the value process and the volatility process on the terminal
condition is also provided.

The Markovian system of forward-backward SDE’s in questionis the following pair of
equations.











Xt,x(s) = x, 0 ≤ s≤ t;

dXt,x(s) = f (s,Xt,x(s))ds+ σ(s,Xt,x(s))dBs, t < s≤ T.
(3.3.1)















































Yt,x(s) =ξ(Xt,x(T)) +
∫ T

s
g(r,Xt,x(r),Yt,x(r),Zt,x(r))dr −

∫ T

s
Zt,x(r)dBr

+ Kt,x(T) − Kt,x(s);

Yt,x(s) ≥L(s,Xt,x(s)), t ≤ s≤ T,
∫ T

t
(Yt,x(s) − L(s,Xt,x(s)))dKt,x(s) = 0.

(3.3.2)

For anyx ∈ Rl , the SDE (3.3.1) has a unique strong solution, under Assumption 3.3.1
(1) below (cf. page 287, Karatzas and Shreve (1988) [33]). A solution to the forward-
backward system (3.3.1) and (3.3.2) is a triplet of processes (Yt,x,Zt,x,Kt,x) satisfying
(3.3.2), whereYt,x ∈ M2(m; 0,T), Zt,x ∈ L2(m × d; 0,T), and Kt,x is a continuous,
increasing process inM2(m; 0,T). The superscript (t, x) onX, Y, Z, andK indicates the
statex of the underlying processX at timet. It will be omitted for notational simplicity.

Assumption 3.3.1 (1) In (3.3.1), the drift f : [0,T] × Rl → Rl , and volatilityσ :
[0,T] ×Rl → Rl×d, are deterministic, measurable mappings, locally Lipschitz in x uni-
formly over all t∈ [0,T]. And for all(t, x) ∈ [0,T]×Rl, | f (t, x)|2+|σ(t, x)|2 ≤ C(1+|x|2),
for some constant C.
(2) In (3.3.2), the driver g is a deterministic measurable mapping g : [0,T] × Rl ×
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R
m×m×d → Rm, (t, x, y, z) 7→ g(t, x, y, z). And for all(t, x, y, z) ∈ [0,T]×Rl ×Rm×Rm×d,
|g(t, x, y, z)| ≤ b(1+ |x|p + |y| + |z|), for some positive constant b.
(3) For every fixed(t, x) ∈ [0,T] × Rl , the mapping g(t, x, ·, ·) is continuous.
(4) The terminal valueξ : Rl → Rm, x 7→ ξ(x), is a deterministic measurable map-
ping. The lower reflecting boundary L: [0,T] × Rl → Rm, (s, x) 7→ L(s, x) is de-
terministic measurable mapping continuous in(s, x). They satisfyE[ξ(X(T))2] < ∞,

E

[

sup
[0,T]

L+(s,X(s))2

]

< ∞, and L(T,X(T)) ≤ ξ(X(T)), a.e. onΩ.

Theorem 3.3.1 Suppose that Assumption 3.3.1 holds, except the growth ratecondition
on g. If the driver g(s, x, y, z) in the reflected BSDE (3.3.2) is Lipschitz in y and z,
uniformly over all s∈ [0,T] and all x∈ Rl , then there exist measurable deterministic
functionsα : [0,T] × Rl → Rm, and β : [0,T] × Rl → Rm×d, such that for any
0 ≤ t ≤ s ≤ T, Yt,x(s) = α(s,Xt,x(s)), and Zt,x(s) = β(s,Xt,x(s)). The solutions to the
BSDE are functions of the state process X.

Proof. First, the one-dimensional casem = 1. There exist measurable, deterministic
functionsan : [0,T] × Rl → R, bn : [0,T] × Rl → Rd, such that for any 0≤ t ≤ s≤ T,
the solution (Y(t,x),n,Z(t,x),n) to the penalized equation

Y(t,x),n(s) =ξ(Xt,x(T)) +
∫ T

s
g(r,Xt,x(r),Y(t,x),n(r),Z(t,x),n(r))dr −

∫ T

s
Z(t,x),n(r)dBr

+ n
∫ T

s
(Y(t,x),n(r) − L(r,Xt,x(r)))−dr

(3.3.3)

can be expressed asY(t,x),n(s) = an(s,Xt,x(s)), andZ(t,x),n(s) = bn(s,Xt,x(s)); in par-
ticular, Y(t,x),n(t) = an(t, x). This is the Markovian property of solutions to one one-
dimensional forward-backward SDE’s with Lipschitz driver, stated as Theorem 4.1 in
El Karoui, Peng and Quenez (1997) [20]. Their proof uses the Picard iteration and the
Markov property of the iterated sequence of solutions, the latter being an interpretation
of Theorem 6.27 on page 206 of Çinlar, Jacod, Protter and Sharpe (1980) [9]. Analyzed
in section 6, El Karoui, Kapoudjian, Pardoux, Peng and Quenez (1997) [19], its solu-
tion (Y(t,x),n,Z(t,x),n) converges to some limit (Yt,x,Zt,x) inM2(m; t,T) × L2(m× d; t,T).
The penalization termn

∫ s

0
(Y(t,x),n(r) − L(r,Xt,x(r)))−dr also has anM2(m; 0,T)-limit

Kt,x(s). The triplet (Yt,x,Zt,x,Kt,x) solves the system (3.3.1) and (3.3.2). But the con-
vergences are also almost everywhere onΩ × [t,T], so

Yt,x(s) = lim
n→∞

Y(t,x),n(s) = lim sup
n→∞

(an(s,Xt,x(s))) = lim sup
n→∞

(an)(s,Xt,x(s)) =: a(s,Xt,x(s)),

(3.3.4)
and

Zt,x(s) = lim
n→∞

Z(t,x),n(s) = lim sup
n→∞

(bn(s,Xt,x(s))) = lim sup
n→∞

(bn)(s,Xt,x(s)) =: b(s,Xt,x(s)).

(3.3.5)
Back to a general dimensionm. By Theorem 3.2.1 and Proposition 3.2.1, the sequence
(Yn+1,Zn+1) = Λ(Yn,Zn), n = 0, 1, 2, · · · , iterated via the mappingΛ as in (3.2.1),
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converges to (Y,Z) a.e. onΩ×[t,T] and inM2(m; 0,T)×L2(m×d; 0,T). If one can prove
Y1(s) andZ1(s) are functions of (s,X(s)), so is every (Yn(s),Zn(s)) by induction. Then
the theorem holds, because (Y,Z) is the pointwise limit of{(Yn(s),Zn(s))}n. The claim
is indeed true. Starting withY(t,x),0(s) = α0(s,X(s)), andZ(t,x),0(s) = β0(s,X(s)), for any
measurable, deterministic functionsα0 : [0,T]×Rl → Rm, andβ0 : [0,T]×Rl → Rm×d

satisfyingα0(·,Xt,x(·)) ∈ M2(m; 0,T), andβ0(·,Xt,x(·)) ∈ L2(m×d; 0,T). In an arbitrary
ith dimension, 1≤ i ≤ m,



























































Y1
i (s) =ξi(X

t,x(T)) +
∫ T

s
gi(r,X

t,x(r), α0(r,X(r)), β0(r,X(r)))dr

−

∫ T

s
Z1

i (r)dBr + K1
i (T) − K1

i (s);

Y1
i (s) ≥Li(s,Xt,x(s)), t ≤ s≤ T,

∫ T

t
(Y1

i (s) − Li(s,Xt,x(s)))dK1
i (s) = 0.

(3.3.6)

From the one-dimensional result, there exist measurable, deterministic functionsα1
i :

[0,T] × Rl → R, andβ1
i : [0,T] × Rl → Rd, such thatY(t,x),1

i (s) = α1
i (s,Xt,x(s)),

andZ(t,x),1
i (s) = β1

i (s,Xt,x(s)), for all 0 ≤ t ≤ s ≤ T. Let α1 = (α1
1, · · · , α

1
m)′, and

β1 = (β1
1, · · · , β

1
m)′, thenY(t,x),1(s) = α1(s,Xt,x(s)), andZ(t,x),1(s) = β1(s,Xt,x(s)), for all

0 ≤ t ≤ s≤ T. �

Remark 3.3.1 To prove the above theorem, besides using the notion of ”additive mar-
tingales” as in Çinlar et al (1980) [9], the two deterministic functions can also be
obtained by solving a multi-dimensional variational inequality following the four-step-
scheme proposed by Ma, Protter and Yong (1994) [?].

The rest of this section will be devoted to proving existenceof solutions to the reflected
forward-backward system (3.3.1) and (3.3.2) under the Assumption 3.3.1. We shall
construct a specific sequence of Lipschitz driversgn to approximate the linear-growth
driverg. The corresponding sequence of solutions will turn out to converge to the sys-
tem (3.3.1) and (3.3.2). We then approximate the continuouslinear growth driverg by
a sequence of Lipschitz functionsgn.

Let ψ̄ be an infinitely differentiable mapping fromRm × Rm×d to R, such that

ψ̄(y, z) =















1, |y|2 + |z|2 ≤ 1;

0, |y|2 + |z|2 ≥ 4,
(3.3.7)

andψ a rescaling of̄ψ by a multiplicative constant such that
∫

Rm×Rm×d
ψ(y, z)dydz= 1. (3.3.8)

The functionψ is a kernel conventionally used to smooth out non-differentiability, for
example, by Karatzas and Ocone (1992) [?], or to approximate functions of higher
growth rate, for example, by Hamadène, Lepeltier and Peng (1997) [26].
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The approximating sequencegn is defined as

gn(t, x, y, z) = n2ψ

(y
n
,

z
n

)

∫

Rm×Rm×d
g(t, x, y1, z1)ψ̄(n(y− y1), n(z− z1))dy1dz1. (3.3.9)

According to Hamadène, Lepeltier and Peng (1997) [26], thesequence of functionsgn

has the properties:
(a)gn is Lipschitz with respect to (y, z), uniformly over all (t, x) ∈ [0,T] × Rl ;
(b) |gn(t, x, y, z)| ≤ b(1+ |x|p + |y| + |z|), for all (t, x, y, z) ∈ [0,T] × Rl × Rm × Rm×d, for
some positive constantb;
(c) |gn(t, x, y, z)| ≤ bn(1 + |x|p), for all (t, x, y, z) ∈ [0,T] × Rl × Rm × Rm×d, for some
positive constantbn;
(d) for any (t, x) ∈ [0,T] × R, and for any compact setS ⊂ Rm × Rm×d,

sup
(y,z)∈S

|gn(t, x, y, z) − g(t, x, y, z)| → 0, asn→ 0. (3.3.10)

Proposition 3.3.1 The BSDE with reflecting barrier



































Yn(s) = ξ(X(T)) +
∫ T

s
gn(r,X(r),Yn(r),Zn(r))dr −

∫ T

s
Zn(r)dBr + Kn(T) − Kn(s);

Yn(s) ≥ L(s,X(s)), t ≤ s≤ T,
∫ T

t
(Yn(s) − L(s,X(s)))dKn(s) = 0

(3.3.11)
has a unique solution(Yn,Zn,Kn). Furthermore, there exist measurable, deterministic
functionsαn and βn, such that Yn(s) = αn(s,X(s)), and Zn(s) = βn(s,X(s)), for all
0 ≤ s≤ T.

Proof. This is a direct consequence of the uniform Lipschitz property of gn, Proposition
3.2.1 and Theorem 3.3.1. �

Lemma 3.3.1 Suppose(Y,Z,K) solves the BSDE (3.3.2) with reflecting barrier. As-
sume (2) and (4) of Assumption 3.3.1. Then there exists a positive constant C, such
that

E

[

sup
0≤s≤T

Y(s)2 +

∫ T

t
Z(r)2ds+ K(T)2

]

≤ C(1+ |x|2(p∨1)). (3.3.12)

The constant C does not depend on t, but depends on m, b, T ,E[ξ(X(T))2] andE

[

sup
[0,T]

L+(t,X(t))2

]

.

Proof. First prove that, for some constantC′, we have

E

[

Y(s)2 +

∫ T

t
Z(r)2ds+ K(T)2

]

≤ C′(1+ |x|2(p∨1)), for all 0≤ s≤ T. (3.3.13)
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Applying Itô’s rule toY(·)2, and integrating froms to T, we get

Y(s)2 +

∫ T

s
Z(r)2dr

=ξ(X(T))2 + 2
∫ T

s
Y(r)g(r,X(r),Y(r),Z(r))dr − 2

∫ T

s
Y(r)Z(r)dB(r) + 2

∫ T

s
L(r,X(r))dK(r).

(3.3.14)

Taking expectations of (3.3.14), and using Assumption 3.3.1 (2), we obtain

E

[

Y(s)2 +

∫ T

s
Z(r)2dr

]

≤E[ξ(X(T))2] + 2bE

[ ∫ T

s
|Y(r)|(1+ |X(r)|p + |Y(r)| + |Z(r)|)dr

]

+ 2E

[
∫ T

s
L(r,X(r))dK(r)

]

≤E[ξ(X(T))2] + 2E

[ ∫ T

s
(1+ |X(r)|2p)dr

]

+C1(b)E

[∫ T

s
|Y(r)|2dr

]

+
1
4
E

[ ∫ T

s
|Z(r)|2dr

]

+ 2E

[ ∫ T

s
L(r,X(r))dK(r)

]

.

(3.3.15)

For anyα > 0,

2
∫ T

t
L(s,X(s))dK(s) ≤ 2

(

sup
[0,T]

L(s,X(s))

)

K(T) ≤
1
α

K(T)2 + α sup
[0,T]

L+(s,X(s))2.

(3.3.16)

Combine (3.3.15) and (3.3.16), and apply Gronwall’s Lemma to Y(·),

E

[

Y(s)2 +
3
4

∫ T

s
Z(r)2dr

]

≤C2(b,T)

(

1+ E[ξ(X(T))2] + E

[ ∫ T

s
|X(r)|2pdr

]

+
1
α

K(T)2 + α sup
[0,T]

L+(s,X(s))2

)

.

(3.3.17)

If rewriting (3.3.2) fromt to T, K(·) can be expressed in terms ofY(·) andZ(·) by

K(T) = Y(t) − ξ(X(T)) −
∫ T

t
g(s,X(s),Y(s),Z(s))ds+

∫ T

t
Z(s)dBs, (3.3.18)
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and hence because of the linear growth Assumption 3.3.1 (2),we have

E[K(T)2] = C3E

[

Y(t)2 + ξ(X(T))2 +

∫ T

t
g(s,X(s),Y(s),Z(s))2ds+

∫ T

t
Z(s)2ds

]

≤C4(b)

(

E

[

Y(t)2 + ξ(X(T))2 + 1+
∫ T

t
|X(s)|2pds

]

+ E

[
∫ T

t
|Y(s)|2ds

]

+ E

[ ∫ T

t
|Z(s)|2ds

])

.

(3.3.19)

BoundE[|Y(s)|2] andE

[

∫ T

t
|Z(s)|2ds

]

in (3.3.19) by (3.3.17),

E[K(T)2] ≤ C5(b, t,T)

(

E

[

ξ(X(T))2 + 1+
∫ T

t
|X(s)|2pds

]

+
1
α
E[K(T)2] + αE

[

sup
[0,T]

L+(s,X(s))2

])

.

(3.3.20)

Let α = 4C5(b, t,T), and collectE[K(T)2] terms on both sides of (3.3.20),

E[K(T)2] ≤ C6(b, t,T)E

[

ξ(X(T))2 + 1+
∫ T

t
|X(s)|2pds+ sup

[0,T]
L+(s,X(s))2

]

. (3.3.21)

Finally, (3.3.17) and (3.3.21) altogether gives

E

[

Y(s)2 +

∫ T

s
Z(r)2ds+ K(T)2

]

≤C7(b, t,T)

(

1+ E[ξ(X(T))2] + E

[
∫ T

t
|X(r)|2pdr

]

+ E

[

sup
[0,T]

L+(s,X(s))2

])

.

(3.3.22)

From page 306 of Karatzas and Shreve (1988) [33], forp ≥ 1,

E

[

sup
[0,T]
|Xt,x(s)|2p

]

≤ C8(1+ |x|2p). (3.3.23)

Then the constantC′ in (3.3.13) can be chosen as

C′ =

(

sup
0≤t≤T

C7(b, t,T)

)

max

{

1+ E[ξ(X(T))2] + E

[

sup
[0,T]

L+(s,X(s))2

]

,C8T

}

< ∞.

(3.3.24)
To bound theL2 supremum norm ofY(·), taking first supremum overs ∈ [0,T] then
expectation, on both sides of (3.3.14), using Burkholder-Davis-Gundy inequality, and
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combining with (3.3.16),

E

[

sup
[0,T]

Y(s)2 +

∫ T

t
Z(r)2dr

]

≤E[ξ(X(T))2] + 2bE

[

sup
[0,T]

∫ T

s
|Y(r)|(1+ |X(r)|p + |Y(r)| + |Z(r)|)dr

]

+C9(m)E

[

√

∫ T

t
|Y(r)|2 · |Z(r)|2dr

]

+ 2E

[ ∫ T

s
L(r,X(r))dK(r)

]

≤E[ξ(X(T))2] + bE

[ ∫ T

t
|Y(r)|2dr

]

+ bE

[ ∫ T

t
(1+ |X(r)|p + |Y(r)| + |Z(r)|)2dr

]

+C9(m)E

[

sup
[0,T]
|Y(s)|

√

∫ T

t
|Z(r)|2dr

]

+ E[K(T)2] + E

[

sup
[0,T]

L+(s,X(s))2

]

≤E[ξ(X(T))2] +C10(b)E

[ ∫ T

t
(1+ |X(r)|2p + |Y(r)|2 + |Z(r)|2)dr

]

+
1
2
E

[

sup
[0,T]
|Y(s)|2

]

+ 2C9(m)2
E

[ ∫ T

t
|Z(r)|2dr

]

+ E[K(T)2] + E

[

sup
[0,T]

L+(s,X(s))2

]

.

(3.3.25)

Equation (3.3.25) implies that

1
2
E

[

sup
[0,T]

Y(s)2

]

≤E[ξ(X(T))2] +C10(b)E

[
∫ T

t
(1+ |X(r)|2p + |Y(r)|2 + |Z(r)|2)dr

]

+ 2C9(m)2
E

[ ∫ T

t
|Z(r)|2dr

]

+ E[K(T)2] + E

[

sup
[0,T]

L+(s,X(s))2

]

.

(3.3.26)

Inequalities (3.3.13), (3.3.23) and (3.3.26) conclude thelemma. �

Proposition 3.3.2 There exists a positive constant C, such that for0 ≤ t ≤ T, n =
1, 2, · · · ,

αn(t, x) = Y(t,x),n(t) = E[Y(t,x),n(t)|Ft] ≤ C(1+ |x|p∨1). (3.3.27)

Proposition 3.3.3 The sequence{gn(·,X(·),Yn(·),Zn(·))}n is uniformly bounded in the
L

2(m; t,T)-norm, and the sequence{Kn(·)}n is uniformly bounded in theM2(m; t,T)-
norm, both uniformly over all n. As n→ ∞, gn(·,X(·),Yn(·),Zn(·)) weakly converges
to some limit G(·) in L2(m; t,T) along a subsequence, and Kn(·) weakly converges to
some limit K(·) inM2(m; t,T) along a subsequence, for every s∈ [t,T].

Proof. It suffices to show the uniform boundedness of{gn(·,X(·),Yn(·),Zn(·))}n in
L

2(m; t,T) and of{Kn(T)}n in L2(m), which is a result of the linear growth property (b)
and Lemma 3.3.1. TheL2(m) uniform boundedness of{Kn(T)}n means that there exists



3.3. MARKOVIAN SYSTEM WITH LINEAR GROWTH RATE 77

a constantC < ∞, such thatE[|Kn(T)|2] < C. SinceKn(·) is required to be an increasing
process starting fromKn(t) = 0, then for allt ≤ s≤ T, E[|Kn(s)|2] ≤ E[|Kn(T)|2] < C.
�

With the help of weak convergence along a subsequence, we proceed to argue that
the weak limits are also strong, thus deriving a solution to BSDE (3.3.2). For no-
tational simplicity, the weakly convergent subsequences are still indexed byn. The
passing from weak to strong convergence makes use of the Markovian structure of the
system described by Theorem 3.3.1, which states that the valued processYn(s) is a
deterministic function of timesand state processX(s) only.

Lemma 3.3.2 The approximating sequence of solutions{(Y(t,x),n,Z(t,x),n)}n is Cauchy in
L

2(m; t,T)×L2(m×d; t,T), thus having a limit(Yt,x,Zt,x) in L2(m; t,T)×L2(m×d; t,T)
and a.e. on[t,T] × Ω.

Proof. For anyt ∈ [0,T], any x ∈ Rl , and anyn = 1, 2, · · · , Y(t,x),n(t) = αn(t, x) is
deterministic. First prove the convergence of{αn(t, x)}n by showing it is Cauchy. From
equation (3.3.11) comes the following inequality,

|αn(t, x) − αk(t, x)| = |Yn(t) − Yk(t)|

≤

∣

∣

∣

∣

∣

∣

E

[ ∫ T

t
(gn(s,X(s),Yn(s),Zn(s)) − gk(s,X(s),Yk(s),Zk(s)))ds

]
∣

∣

∣

∣

∣

∣

+ |E[Kn(T) − Kk(T)]| + |E[Kn(t) − Kk(t)]|.

(3.3.28)

By the weak convergence from Proposition 3.3.3, all the three summands on the right
hand side of the above inequality converge to zero, asnandk both go to infinity. Denote
the limit of αn(t, x) asα(t, x), which is consequently deterministic and measurable,
becauseαn(·, ·) is measurable. Theorem 3.3.1 states that for anyt ≤ s≤ T, Y(t,x),n(s) =
αn(s,Xt,x(s)). Because of the pointwise convergence ofαn(·, ·), Y(t,x),n(s) converges to
someY(t,x)(s), a.e. (s, ω) ∈ [t,T] × Ω, asn → ∞. Proposition 3.3.2 states that there
exists a positive constantC, such that for 0≤ t ≤ T, n = 1, 2, · · · ,

|Y(t,x),n(s)| = |αn(s,Xt,x
s )| ≤ C(1+ |Xt,x

s |
p∨1), (3.3.29)

the last term of which is square-integrable by (3.3.23). Then it follows from the domi-
nated convergence theorem that the convergence ofY(t,x),n(s) is also inL2(m; t,T).

Apply Itô’s rule to (Y(t,x),n(s) − Y(t,x),k(s))2, and integrate froms to T. The reflecting
conditions that leads to the inequality (3.2.14) gives

(Yn(s) − Yk(s))2 +

∫ T

s
(Zn(r) − Zk(r))2dr

≤

∫ T

s
(Yn(r) − Yk(r))(gn(r,X(r),Yn(r),Zn(r)) − gk(r,X(r),Yk(r),Zk(r)))dr

+

∫ T

s
(Yn(r) − Yk(r))(Zn(r) − Zk(r))dBr .

(3.3.30)
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Taking expectation of (3.3.30),

E[(Yn(s) − Yk(s))2] + E

[
∫ T

s
(Zn(r) − Zk(r))2dr

]

≤E

[ ∫ T

s
(Yn(r) − Yk(r))(gn(r,X(r),Yn(r),Zn(r)) − gk(r,X(r),Yk(r),Zk(r)))dr

]

≤E

[
∫ T

s
(Yn(r) − Yk(r))2dr

]
1
2

· E

[ ∫ T

s
(gn(s,X(r),Yn(r),Zn(r)) − gk(r,X(r),Yk(r),Zk(r)))2dr

]
1
2

.

(3.3.31)

In order to prove convergence of{Zn(·)}n, it suffices to prove uniform boundedness of

E

[

∫ T

t
gn(s,X(s),Yn(s),Zn(s))2ds

]

, for all n, which is part of Proposition 3.3.3. The

L
2(m× d; t,T)-convergence of{Zn(·)}n implies almost sure convergence along a subse-

quence, also denoted as{Zn(·)}n to simplify notations. �

We have identified a strongly convergent subsequence of{(Yn,Zn)}n, also denoted as
{(Yn,Zn)}n. Let’s remind ourselves that (Yn,Zn) solves the system (3.3.1) and (3.3.11),
so if the weak limitG(·) of gn(·,X(·),Yn(·),Zn(·)) is also the strong limit, and ifG(·) has
the formg(·,X(·),Y(·),Z(·)), then the limit (Y,Z,K) indeed solves the forward-backward
system (3.3.1) and (3.3.2).

Lemma 3.3.3 As n→ ∞, gn(s,X(s),Yn(s),Zn(s))→ g(s,X(s),Y(s),Z(s)), inL2(m; t,T)
and a.e. on[t,T] × Ω.

Proof. The method is the same as that on page 122 of Hamadène, Lepeltier and Peng
(1997) [26]. The proof is briefly repeated here for completeness.

E

[
∫ T

t
|gn(s,X(s),Yn(s),Zn(s)) − g(s,X(s),Y(s),Z(s))|ds

]

≤E

[ ∫ T

t
|gn(s,X(s),Yn(s),Zn(s)) − g(s,X(s),Yn(s),Zn(s))|1{|Yn(s)+Zn(s)|≥A}ds

]

+ E

[ ∫ T

t
|gn(s,X(s),Yn(s),Zn(s)) − g(s,X(s),Yn(s),Zn(s))|1{|Yn(s)+Zn(s)|≤A}ds

]

+ E

[ ∫ T

t
|g(s,X(s),Yn(s),Zn(s)) − g(s,X(s),Y(s),Z(s))|ds

]

.

(3.3.32)

By linear growth Assumption 3.3.1 (2) forg and property (b) forgn, and Lemma 3.3.1,
both |gn(s,X(s),Yn(s),Zn(s)) − g(s,X(s),Yn(s),Zn(s))| and |g(s,X(s),Yn(s),Zn(s)) −
g(s,X(s),Y(s),Z(s))| are uniformly bounded inL2(m; 0,T) for all n. The first term
on the right hand side of (3.3.32) is at most of the order1

A , thus vanishing asA goes
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to infinity. Recalling property (d), for fixedA, the second term vanishes asn → ∞.
Because of its uniform boundedness inL2(m; t,T), the integrand in the third term is
uniformly integrable for alln, so expectation of the integral again goes to 0 asn→ ∞.
The a.e. convergent subsequence ofgn(s,X(s),Yn(s),Zn(s)) is also indexed byn to
simplify notations. �

Proposition 3.3.4 TheL2(m; t,T) convergence and the a.e. convergence of{Y(t,x),n(s)}n
to Y(t,x)(s) are uniform over all s∈ [t,T].

Proof. To see uniform convergence of{Yn}, applying Itô’s rule to (Yn(s) − Y(s))2,
integrating froms to T, taking supremum over 0≤ s ≤ T and then expectation, by
Burkholder-Davis-Gundy inequality,

E

[

sup
[0,T]

(Yn(s) − Y(s))2

]

+ E

[
∫ T

t
(Zn(r) − Z(r))2dr

]

≤E

[

sup
[0,T]

∫ T

s
(Yn(r) − Y(r))(gn(r,X(r),Yn(r),Zn(r)) − g(r,X(r),Y(r),Z(r)))dr

]

+ E

[( ∫ T

t
(Yn(r) − Y(r))2(Zn(r) − Z(r))2dr

)
1
2
]

≤E

[

sup
s∈[0,T]

( ∫ T

s
(Yn(r) − Y(r))2dr

)
1
2
( ∫ T

s
(gn(s,X(r),Yn(r),Zn(r)) − g(r,X(r),Y(r),Z(r)))2dr

)
1
2
]

+ E

[

sup
s∈[0,T]

{|Yn(s) − Y(s)|}

(
∫ T

t
(Zn(r) − Z(r))2dr

)
1
2
]

≤

(

E

[ ∫ T

t
(Yn(r) − Y(r))2dr

])
1
2
(

E

[ ∫ T

t
(gn(s,X(r),Yn(r),Zn(r)) − g(r,X(r),Y(r),Z(r)))2dr

])
1
2

+
1
4
E

[

sup
[0,T]
|Yn(s) − Y(s)|2

]

+ E

[ ∫ T

t
(Zn(r) − Z(r))2dr

]

.

(3.3.33)

Equation (3.3.33) implies

3
4
E

[

sup
[0,T]

(Yn(s) − Y(s))2

]

≤

(

E

[ ∫ T

t
(Yn(r) − Y(r))2dr

])
1
2
(

E

[ ∫ T

t
(gn(s,X(r),Yn(r),Zn(r)) − g(r,X(r),Y(r),Z(r)))2dr

])
1
2

.

(3.3.34)

By Proposition 3.3.3, by linear growth properties (b) ofgn and Assumption 3.3.1 (2)
on g, and by Lemma 3.3.1, the second multiplier on the right hand side of (3.3.34) is
bounded by a constant, uniformly over alln. By Lemma 3.3.2, the first multiplier on
the right hand side of (3.3.34) converges to zero asn→ ∞. Hence

lim
n→∞
E

[

sup
[0,T]

(Yn(s) − Y(s))2

]

= 0. (3.3.35)
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�

Proposition 3.3.5 The process Kn(·) converges to some limit K(·) in M1(m; t,T), uni-
formly over all s∈ [t,T], and a.e. on[t,T] ×Ω.

Proof. Define

K̄(s) := Y(t) − Y(s) −
∫ s

t
g(r,X(r),Y(r),Z(r))dr +

∫ s

t
Z(r)dBr, t ≤ s≤ T, (3.3.36)

whereY(·), Z(·) andg are the limits ofYn(·), Zn(·) andgn. From (3.3.11),

Kn(s) = Yn(t) − Yn(s) −
∫ s

t
gn(r,X(r),Yn(r),Zn(r))dr +

∫ s

t
Zn(r)dBr . (3.3.37)

Need to show that

E

[

sup
s∈[0,T]

∣

∣

∣Kn(s) − K̄(s)
∣

∣

∣

]

→ 0, (3.3.38)

asn→ ∞.

For all n = 1, 2, · · · ,

E

[

sup
[0,T]

∣

∣

∣Kn(s) − K̄(s)
∣

∣

∣

]

≤E

[

|Yn(t) − Y(t)|

]

+ E

[

sup
[0,T]
|Yn(s) − Y(s)|

]

+ E

[

sup
s∈[0,T]

∣

∣

∣

∣

∣

∫ s

t
(Zn(r) − Z(r))dBr

∣

∣

∣

∣

∣

]

+ E

[ ∫ T

t
|gn(r,X(r),Yn(r),Zn(r)) − g(r,X(r),Y(r),Z(r))|dr

]

.

(3.3.39)

As n→ ∞, the first three summands in (3.3.39) go to zero, by Lemma 3.3.2, Proposi-
tion 3.3.4 and Lemma 3.3.3. From Burkholder-Davis-Gundy inequality, there exists a
constantC universal for alln, such that

E

[

sup
s∈[0,T]

∣

∣

∣

∣

∣

∫ s

t
(Zn(r) − Z(r))dBr

∣

∣

∣

∣

∣

]

≤ CE

[ (
∫ T

t
|Zn(r) − Z(r)|2dr

)
1
2
]

, (3.3.40)

the right hand side of which converges to zero asn→ ∞, by Lemma 3.3.2.
The a.e. convergent subsequence is still denoted as{Kn(·)}n to simplify notations. The
strong limit K̄(·) coincides with the weak limitK(·) in Proposition 3.3.3. �

Proposition 3.3.6 The processes Y(·) and K(·) satisfy the reflection conditions Y(·) ≥
L(·,X(·)) and

∫ T

t
(Y(s) − L(s,X(s)))dK(s) = 0.

Proof. Since (Yn,Zn,Kn) solves (3.3.11),Yn(·) andK(·) satisfy the reflecting conditions

Yn(s) ≥ L(s,X(s)), t ≤ s ≤ T, and
∫ T

t
(Yn(s) − L(s,X(s)))dKn(s) = 0. SinceYn(·)
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converges toY(·) pointwisely on [0,T] ×Ω, thatY(·) ≥ L(·,X(·)) holds true. It remains
to prove

∫ T

t
(Y(s) − L(s,X(s)))dK(s) =

∫ T

t
(Yn(s) − L(s,X(s)))dKn(s). (3.3.41)

To wit,
∣

∣

∣

∣

∣

∣

∫ T

t
(Yn(s) − L(s,X(s)))dKn(s) −

∫ T

t
(Y(s) − L(s,X(s)))dK(s)

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

∫ T

t
(Yn(s) − Y(s))dKn(s)

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∫ T

t
(Y(s) − L(s,X(s)))d(K(s) − Kn(s))

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

sup
s∈[0,T]

{Yn(s) − Y(s)}Kn(T)

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∫ T

t
(Y(s) − L(s,X(s)))d(K(s) − Kn(s))

∣

∣

∣

∣

∣

∣

.

(3.3.42)

Let n tend to zero. By Proposition 3.3.4, the first summand in the last line of (3.3.42)
converges to|0 · K(T)| = 0, a.e. onΩ. Proposition 3.3.5 implies thatKn(s) converges
to K(s) in probability, uniformly over alls ∈ [t,T], so the measuredKn(s) weakly con-
verges todK(s) in probability, uniformly over alls ∈ [t,T]. It follows that the second
summand in the last line of (3.3.42) converges to zero, a.e. onΩ. �

We may now conclude the following existence result.

Theorem 3.3.2 Under Assumption 3.3.1, there exists a solution(Y,Z,K) to the BSDE
(3.3.2) with reflecting barrier in the Markovian framework.

Proof. The solutions{(Yn,Zn,Kn)}n to the approximating equations (3.3.11) have limits
(Y,Z,K). The triplet (Y,Z,K) is a solution to the Markovian system (3.3.1) and (3.3.2).
�

Theorem 3.3.3 (Comparison Theorem)
Suppose(Yt,x,Zt,x,Kt,x) solves forward-backward system (3.3.1) and (3.3.2) with pa-
rameter set(ξ, g, L), and (Ȳt,x, Z̄t,x, K̄t,x) solves the forward-backward system (3.3.1)
and (3.3.2) with parameter set(ξ̄, ḡ, L̄). Let dimension of the equations be m= 1. Un-
der Assumption 3.3.1 for both sets of parameters, if
(1) ξ(x) ≤ ξ̄(x), a.e.,∀x ∈ Rl ;
(2) g(s, x, y, z) ≤ ḡ(s, x, y, z), for all t ≤ s≤ T, and all(x, y, z) ∈ Rl × R × Rd; and
(3) L(s, x) ≤ L̄(s, x), for all t ≤ s≤ T, and all x∈ Rl ,
then

Yt,x(s) ≤ Ȳt,x(s), for all t ≤ s≤ T. (3.3.43)

Proof. Let {gn}n and{ḡn}n be, respectively, the uniform Lipschitz sequences approxi-
matingg andḡ as in (3.3.9). According to Property (a), bothgn andḡn are Lipschitz in
(y, z), for all t andx. We notice that (2) in the conditions of this theorem impliesthat

gn(s, x, y, z) ≤ ḡn(s, x, y, z), (3.3.44)
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for all t ≤ s ≤ T, and all (x, y, z) ∈ Rl × Rm × Rm×d, via construction (3.3.9). Let
(Y(t,x),n,Z(t,x),n,K(t,x),n) be solution to system (3.3.1) and (3.3.2) with parameter set
(ξ, gn, L), and (̄Y(t,x),n, Z̄(t,x),n, K̄(t,x),n) be solution to system (3.3.1) and (3.3.2) with pa-
rameter set (̄ξ, ḡn, L̄). By Theorem 3.2.2,

Y(t,x),n(s) ≤ Ȳ(t,x),n(s), t ≤ s≤ T. (3.3.45)

But asn→ ∞, proven earlier in this section,

Y(t,x),n(·)→ Yt,x(·), Ȳ(t,x),n(·)→ Ȳt,x(·), a.e. on [t,T] × Ω and inL2(m; t,T), (3.3.46)

so
Yt,x(s) ≤ Ȳt,x(s), t ≤ s≤ T. (3.3.47)

�

Theorem 3.3.4 (Continuous Dependence Property)
Under Assumption 3.3.1, if(Yt,x,Zt,x,Kt,x) solves the system (3.3.1) and (3.3.2), and
(Ȳt,x, Z̄t,x, K̄t,x) solves the system (3.3.1) and















































Ȳt,x(s) =ξ̄(Xt,x(T)) +
∫ T

s
g(r,Xt,x(r), Ȳt,x(r), Z̄t,x(r))dr −

∫ T

s
Z̄t,x(r)dBr

+ K̄t,x(T) − K̄t,x(s);

Ȳt,x(s) ≥L(s,Xt,x(s)), t ≤ s≤ T,
∫ T

t
(Ȳt,x(s) − L(s,Xt,x(s)))dK̄t,x(s) = 0,

(3.3.48)

then

E[(Yt,x(s) − Ȳt,x(s))2] + E

[ ∫ T

s
(Zt,x(r) − Z̄t,x(r))2dr

]

≤E[|ξ − ξ̄|2] +CE

[
∫ T

s
(Yt,x(r) − Ȳt,x(r))2dr

]
1
2

, 0 ≤ t ≤ s≤ T.

(3.3.49)

Proof. Apply Itô’s rule to (Yt,x − Ȳt,x)2, and integrate froms to T. Use Lemma 3.3.1
and Assumption 3.3.1 (2). �

Remark 3.3.2 When the driver g is concerned about in Assumption 3.3.1, 3.3.1 (2)
(linear growth rates in y and z, and polynomial growth rate inx) is crucial in bounding
theL2-norms thus proving convergence of a Lipschitz approximating sequence. Conti-
nuity Assumption 3.3.1 (3) is only for convenience, becausea measurable function can
always be approximated by continuous functions of the same growth rate.

Remark 3.3.3 The results in section 3.2 and section 3.3 are valid for any arbitrary
filtered probability space that can support a d-dimensionalBrownian motion. In par-
ticular, in the canonical space set up at the beginning of section 3.1, we may replace
Assumption 3.3.1 (1) and (2) with the more general Assumption 3.3.1 (1’) and (2’),
while still getting exactly the same statements in section 3.3 with tiny modifications of
the proofs. Assumption 3.3.1 corresponds to Assumption 3.1.1 on the state process X(·)
in (3.1.3). The growth rate (3.1.56) of the Hamiltonians (3.1.55) satisfies Assumption
3.3.1 (2’).
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Assumption 3.3.1 (1’) In (3.3.1), the drift f : [0,T] × Cl [0,∞) → R
l , (t, ω) 7→

f (t, ω(t)), and volatilityσ : [0,T] × Cl [0,∞) → Rl×d, (t, ω) 7→ σ(t, ω(t)), are de-
terministic, measurable mappings such that

| f (t, ω(t)) − f (t, ω̄(t))| + |σ(t, ω(t)) − σ(t, ω̄(t))| ≤ C sup
0≤s≤t
|ω(s) − ω̄(s)|, (3.3.50)

and

| f (t, ω(t))|2 + |σ(t, ω(t))|2 ≤ C

(

1+ sup
0≤s≤t
|ω(s)|2

)

, (3.3.51)

with some constant C for all0 ≤ t ≤ T,ω andω̄ in Cl [0,∞).
(2’) In (3.3.2), the driver g is a deterministic measurable mapping g: [0,T]×Cl[0,∞)×
R

m×m×d → Rm, (t, ω, y, z) 7→ g(t, ω(t), y, z). And

|g(t, ω(t), y, z)| ≤ b

(

1+ sup
0≤s≤t
|ω(s)|p + |y| + |z|

)

, (3.3.52)

with some positive constant b for all(t, ω, y, z) ∈ [0,T] ×Cl [0,∞) × Rm × Rm×d.
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