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Abstract

This dissertation takes two approaches — martingale arldiaad stochastic dieren-
tial equation (BSDE) — to solve non-zero-sum stochasftferintial games in which all
players can control and stop the reward streams of the gdfmiesience of equilibrium
stopping rules is proved under some assumptions.

The martingale part provides an equivalent martingaleadtarization of Nash equilib-
rium strategies of the games. When using equilibrium stoppiles, Isaacs’ condition
is necessary and ficient for the existence of an equilibrium control set.

The BSDE part shows that solutions to BSDESs provide valuegsges of the games.
A multidimensional BSDE with reflecting barrier is studiedtivo cases for its solu-

tion: existence and uniqueness with Lipschitz growth, axigtence in a Markovian

system with linear growth rate.
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Chapter 1

Bibliographical Notes

Game theory is deeply rooted in history, benefiting sincdemtidimes, yet human
beings did not seem to have mathematically brought it to aglger level until early
the twentieth century. Despite of the Nobel prize for Johsi&”Nash equilibrium”,
among other Nobel Laureates on game theory, twentieth geathievements on non-
zero-sum games were not well known to the great majorityl antOscar film called
"A Beautiful Mind” was release byniversal Picturesn the year 2001. If there has
to be a simplest and understandable example on non-zer@aome and Nash equi-
librium, go watching the movie. Author of this dissertatioas lucky enough to have
heard the following dialogue (not every word exactly recatd

(11th March 2009, Columbia University)

Kuhn : Don'’t learn game theory from the movie. The blondeghmnot a Nash
equilibrium!

Odifreddi : How you invented the theory, | mean, the storyulibe blonde, was it
real?

Nash : No!!!

Odifreddi : Did you apply game theory to win Alicia?

Nash: ...Yes...

(followed by 10 min’s discussion on personal life and ganemtly)

1.1 From zero-sum to non-zero-sum games

1.1.1 Von Neumann and zero-sum games

Von Neumann moved to Princeton University in 1928, wheredyafarized the study
of game theory. Von Neumann and coworkers’ main achievesn@mtgames were
about those where one player’s reward is identically thempayer’s lost, formally

1



2 CHAPTER 1. BIBLIOGRAPHICAL NOTES

called "zero-sum” games.

In a zero-sum game, there are two players | and Il, whose gesteategies are re-
spectively denoted ag ands,, andR(s;, ) a reward for Player | and cost to Player Il
that is subject to the players’ strategissg, ). Simultaneously, Player | tries to max-
imize the reward and Player Il minimizes it. Since Playeréslaot necessarily know
the strategy that Player Il is employing, he would maximigereward with strategy
s1, assuming Player Il makes it the least favorable by miningzhe same quantitig
with strategys,. The resulting reward

V = supinf R(s1, %) (2.1.2)
s 2

is called "lower value” of the zero-sum game. Symmetricdhayer Il would minimize
his cost in Player I's most favorable choice, resulting ipger value”

V = inf SUpR(s1, &) (1.1.2)
2 5
of the game.

Lower value of a game is apparently no larger than the uppeevaNhen the two
values identify with each other, they are called "the valofthe game. The zero-sum
game is then said to "have a value”. The optimal pair of sgjiate(s;, s;) that achieves
the upper and the lower values is called a "saddle point”.

Definition 1.1.1 A saddle poin(s;, s;) of a zero-sum game is a single pair of strategies
that attains bottsup infin the lower value (1.1.1) andf supin the upper value (1.1.2).
When a saddle exists,

V = supinf R(s;, ) = inf supR(s;, s,) = V. (1.1.3)
S 2 5

Another definition of a saddle poing(, ;) respects the stability that the optimal strate-
gies produce. When Player Il employs stratefjythe strategys; had better maximize
the rewardR over all possible strategies for Player I. When Player | eypktrategy
s;, the strategys; had better minimize the coBtover all possible strategies for Player
II. This way, neither Player is likely to deviate from his opal strategy.

Definition 1.1.2 A saddle poin{s;, s;) of a zero-sum game is a pair of strategies such
that

R(s1.$) < R(S;, 8) < R(s;, &) (1.1.4)

The two definitions of a saddle are equivalent. If the pairtcdtegies §;, s;) attains
inf sup and sup inf, then

R(s..S) = igj SUpR(s1, ) = igj R(s]. 2) < R(s;, &), for anys,, (1.1.5)
Sy
and

R(s1. 5p) = supinf R(si. sp) = SUpR(si, $p) > R(si, 5p), for anys. (1.1.6)
Sy St
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Suppose &, s;) satisfies inequality (1.1.4). Taking supremum over all edible
strategiess; of Player I, and infimum over all admissible strateggsof Player II,
inequality (1.1.4) becomes

supR(s1, s;) < R(s], S5) < irs12f R(s, ). (1.1.7)
st

Since isrgfsupR(sl, $) < supR(s, s;), and iS|;1fR(s§, ) < supirs12f R(s1, &), inequality
St S S
(1.1.7) produces

inf supR(s1, S;) < R(s], S;) < supinf R(s], $). (1.1.8)
2 g 5 =

But that
supinf R(s;, 52) < inf supR(sy, s5) (1.1.9)
s % 2 5

always holds true, there has to be

supinf R(s1, $) = R(s;, S;) = inf supR(si, ). (2.1.10)
SRR 2 s

As an example from finance, signing contract on one contingamm is a zero-sum
game. The writer’s profiloss is identically the buyer’s logwofit. Take a European
call option St — K)* for example. At maturityT, is the stock price $+ is higher
than the strike pric&, the contract forces writer to sell the stock worthy 08 to

the buyer at price . The buyer can sell the stock on the market at pricgr$ In

this case the dlierent $ St — K) between market price and strike price is profit for the
buyer and missed profit for the writer. If stock price fallddve strike price at maturity,
then the buyer does not need to take any action. From therigniteint of view, such

a contract should not be delivered for free. He charges tlyerlai price $P for the
option to buy low. When stock price goes above strike priee,lduyer wins and the
seller loses $ &r — K) — P). When stock price goes below strike price, the buyer loses
and the seller wins $. How much writer of a contract should charge the buyer is the
theme question answered by theories on option pricing.

1.1.2 John Nash and non-zero-sum games

Besides zero-sum games, there exist games with multipleerdavhere the players’
rewards do not necessarily sum up to a constant. Questimn$diw to reach some
pleasant stability for all parties concerned lead to thesttgwment of non-zero-sum
games.

In John Nash’s 1949 one-page Nobel Prize winning paper, beewr
One may define a concept AN n-PERSON GAME in which each player has a fi-

nite set of pure strategies and in which a definite set of paysn® the n players
corresponds to each n-tuple of pure strategies, one stydtegqng taken by each player.
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One such n-tuple counters another if the strategy of eacheplan the countering
n-tuple yields the highest obtainable expectation for iéyer against the i 1 strate-

gies of the other players in the countered n-tuple. A salfrtering n-tuple is called
AN EQUILIBRIUM POINT.

Translating Nash’s definitions into twenty-first centurgiplEnglish. A non-zero-sum
game is the game in which each player chooses a strategy bsshisesponse to other
players’ strategies. An equilibrium is a set of strategsesh that, when applied, no
player will profit from unilaterally changing his own strgie Equivalently, the equi-

librium was a fixed point of the mapping from a given set of telgées to the set of

strategies as the players’ best responses to the given set.

Definition 1.1.3 In a non-zero-sum game of N Players, each player, indexeddayi

choose a strategy.sPlayer i receives a reward'Rs,, - - - , sy) related to the N Players’
strategies. An equilibriurgs;, - - - , sy)) of the non-zero-sum game is a set of strategies,
such that

Rl(si’ SS’ RS S*\]) > Rl(sl’ S;’ Tt S*\I)l for any i,

RS, S+ »S) = RS, &2, -, ), forany s;

(1.1.11)

RS}, S5+ sy) 2 RY(SL. S5, -+, sv), forany .

To credit Nash’s formulation of this equilibrium, the edbilum set of strategies as
in Definition 1.1.3 is conventionally called "Nash equililom”. It is indeed an equi-
librium, for when imposed to all Players, no rational Play@t want to change for a
different strategy.

Nash equilibrium of a non-zero-sum game generalizes theNéarmann-Morgenstern
notion of saddle point of a zero-sum game.

Consider the zero-sum game in section 1.1.1, where Playleodses strateggy to
maximize his rewardR(s;, s;), and Player Il chooses strategyto minimizeR(s;, )

as cost. But his minimizing the coBtis equivalent to Player II's maximizingR. We
may construct a 2-person non-zero-sum game with the tweemayewardsk! = R
andR? = —R. When Player |l employs strategy, s; maximizes Player I's rewargt
over all possible strategies for Player I. When Player | @ypktrategys;, s; maxi-
mizes Player I's rewar&? over all possible strategies for Player II. Hence the pair of
strategiesg;, s;) is a Nash equilibrium of the non-zero-sum game, which toutsto
incorporate saddle point of a zero-sum game. The reasosisgmmarized in Table
1.1.2.
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Player | Player II optimalg;, s5) |

0-sum || maxR(s;, $) mszinR(sl,sg) "saddle”:
Sy

R(s1.$5) < R(s;. S)),
R(s}, $) < R(s}. &)
0-sum ms?xR(sl, ) ms?x—R(sl, ) RS, S)>R(s,S),
-R(s}, ) > -R(s], %)
non-0-sum ms?le(sl, S) ms?xRZ(sl, s)  “equilibrium:

Ri(s}, s5) > Ri(s1, 8),
R(s;, ) = RS}, )

Table 1.1.2: a saddle of a zero-sum game as a special caseqgtigibrium of a
non-zero-sum game.

Through the most popular one, Nash equilibrium is not thg optimality criteria for
an N-player non-zero-sum game. Other optimality criteria i@ "eficient” and "in
the core”.

Definition 1.1.4 A set of strategiegs;, - - - , ) is said to be ficient of the N-player
game, if for any set of strategiési, - - - , Sv), there exists some Player i, such that his
rewards

R(sp, -+ s0) 2 R(s -+, sw). (1.1.12)

The sef(s;,-- -, s) is said to be in the core, if for any index subset I{1,---, N},
there exists some Player i, such that his rewards

RS, ) 2 R(s1 - ), (1.1.13)
where § = s;, for all jel.

Efficient strategies cannot be modified to improve every playstuation. A set of
strategies is in the core, if coalition within any lot canimaprove everyone in the lot
while strategies of players outside of this lot remain thmea Strategies in the core
are both Nash andfigcient. Nash equilibrium andfigciency do not cover each other.
This dissertation will focus on Nash equilibrium.

1.1.3 Popular approaches to stochastic ferential games

Stochastic dferential games are a family of dynamic, continuous time ivassof
games incorporating randomness in both the states andthed® States are random,
described by an adaptedidision process whose dynamics are known. To play a game,
a player receives a running reward cumulated at some rittetiend of the game, and

a terminal reward granted at the end of the game. The rewaed®lated to both the
state process, and the controls at the choice of the plag®dgterministic or random
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functions or functionals of them. A control represents @i action in attempt to in-
fluence his rewards. Assuming his rationality, a player &hoartainly act in the most
profitable way to his knowledge. Since the rewards can beoranthey are usually
measured in expectation, or some other more advancedayifer example variance
as a measure of risk.

Depending on dferent settings, a game could never end, end at a finite detisrmi
tic time, or end at a random time. When the game is termindtadandom time, the

random time is usually a stopping time, meaning up to anyrdetéstic time, a player

is informative enough to tell if he is to quit the game or noherase of interest is to
quit when the state process hits some boundary. The otherc#stting a player de-

termine the time to quit the game, based on his informatiotougiate about the state
process, about his own rewards, and even about other plagatiens. In the latter

case, a player is again assumed rational, seeking the bestrpossible.

In a zero-sum game of timing, one player chooses a stoppimg tb maximize his
reward received from the other player, and the other plalgeoses another stopping
time to minimize the first player’s reward as cost to him. Sacrero-sum game of
stopping is called a "Dynkin game”. It is the two-player ganersion of the op-
timal stopping problem, in practice the optimal exerciseanfAmerican contingent
claim. Dynkin games are connected to singular controldhénsense that, for convex
cost functions, value function of the former games are déxigs of value functions
of the latter. This connection was first observed by Taks@8%) [47], followed by
Fukushima and Taksar (2002) [25] in a Markovian setting byisg free-boundary
problems, and Karatzas and Wang (2001) [36] in a non-Magkosetting based on
weak compactness arguments.

In both zero-sum and non-zero-sum games, the existencevendcchoice of optimal
controls largely relies on, if not equivalent to, the achighty of the maximum or max-
ima of the reward functions. One may prove such achievadslin zero-sum games,
for example, in Bene$ (1970) [1]. However, existence of ptineal control set that
maximizes the Hamiltonians usually enters a non-zero-sammegas an equivalent con-
dition, called Isaacs’ condition, or Nash condition, foaeple in Davis (1979) [12].

Due to the nature of the problem, there have been at least thegor approaches
to solving stochastic lierential games - partial fierential equations, martingale tech-
nigues, and backward stochasti¢feliential equations. Non-zero-sum stochastic dif-
ferential games have not yet fallen out of these categories.

For Markovian rewards, which are functions of the current@af an underling dif-
fusion state process, partiafi@dirential equations become a handy tool. Over the past
thirty years, Bensoussan, Frehse and Friedman built aaetyutheory of PDE’s to
study stochastic flierential games. Among their extensive works, Bensoussén an
Friedman (1977) considered in [6] games of optimal stoppifige existence of op-
timal stopping times of such games is reduced to the studegidlar solutions of
guasi-variational inequalities, assuming continuouslamehded running rewards and
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terminal rewards; Bensoussan and Frehse (2000) in [4]d@lven-zero-sum game of
optimal controls, which is terminated when the state preesdts a bounded domain.
Their running rewards are quadratic forms of the controleming and Soner (1993)
[23] give lectures on controlled Markovftlisions.

Under some regularity conditions and with uniqueness aftsm in some sense, the
HJB PDEs can be numerically implemented using the finifiedince method. Ofie
(2006) [15] is a good manual of finiteftierence methods for financial computations.

The martingale approach to characterizing optimal costiakes back to 1970’s. The
idea is exactly the one to derive Verification Theorems anahian-Jacobi-Bellman
equations: the expected reward is a supermartingale, &d inartingale if and only
if the control is optimal. The martingale approach allows tewards to be path-
dependant on the state process. Among others, there wasaf iarly works dealing
with path-dependant rewards developing from optimizatibrough zero-sum games,
and to non-zero-sum games, by Benes (1970) [1] and (197 1D{thcan and Varaiya
(1971) [16], Davis and Varaiya (1973) [13] and Davis (197R)][ See Davis (1979)
[12] for a survey on the martingale method for optimal colproblems.

To accommodate path-dependent rewards in games of stqgreli envelopes named
after J. L. Snell for his 1952 work [46], instead of stoppiegions for Markovian re-
wards (c.f. Shiryayev (1979) [45]), are used to derive optistopping rules. Snell
envelope is the smallest supermartingale dominating tivards, and is a martingale
if stopped at the optimal stopping time. It is optimal to stelpen, for the first time,
terminal reward granted for early exercise meets the bgstaed reward over all pos-
sible stopping times. The martingale method also facdgahe study of zero-sum and
non-zero-sum games of control and stopping, and is paatiguliseful if the rewards
depend on the path of the state process. When there are &maivards only, Le-
peltier and Etourneau (1987) in [40] used martingale temins to provide sticient
conditions for the existence of optimal stopping times oocpsses that need not be
Markovian. Their general theory requires some order asiamand supermartingale
assumptions on the terminal reward. Karatzas and Zamfi(@6€8) in [38] took the
martingale approach to characterize, then construct samtdhts for zero-sum games
of control and stopping. They also characterized the vahoegsses by the semi-
martingale decompositions and proved a stochastic maxiprinuiple for continuous,
bounded running reward that can be a functional of tii@isiion state process.

The martingale approach is very intuitive, revealing theeese of the problems.

As a tool for stochastic control theory, backward stocleaditferential equations (BS-
DEs for short) were first proposed by Bismut in the 1970'sdPaxk and Peng (1990)
proved in [43] existence and uniqueness of the solution t8 @Bwith uniformly Lip-
schitz growth. El Karoui, Peng and Quenez (1997) [20] is &esuon BSDESs and their
financial applications. Considerable attention has beeatdd to studying the associ-
ation between BSDEs and stochastiffetiential games. Cvitani¢ and Karatzas (1996)
proved in [10] existence and uniqueness of the solution ¢oetijuation with double
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reflecting barriers, and associated their BSDE to a zeroBymkin game. Their work
generalized El Karoui, Kapoudjian, Pardoux, Peng and Quét@97) [19] on one-
dimensional BSDE with one reflecting boundary, which caggugarly stopping fea-
tures as that of American options. Hamadéene and LepeR@Q) [29] and Hamadéne
(2006) [30] added controls to the Dynkin game studied bya&hié and Karatzas (1996)
[10], the tool still being BSDE with double reflecting barse Markovian rewards of
games correspond to the equations in the Markovian frantewdamadéne studied
in [27] and [28] Nash equilibrium control with forward-bagkrd SDE. In Hamadéne,
Lepeltier and Peng (1997) [26], the growth rates of theiwémd-backward SDE are
linear in the value process and the volatility process, agnomial in the state pro-
cess. Their state process is &aion satisfying anI’>-dominance” condition. These
three authors solve a non-zero-sum game without stoppaggdon existence result
of the multi-dimensional BSDE.

BSDE's are after all as much of an analytical tool as prolithil The privilege to
use heavy analysis is an advantage of the BSDE approachféailitates solving the
optimization problems under looser technical conditiofisere have also been plenty
of works on numerical solutions to BSDE'’s.

Readers interested in numerical methods for stochadferential games are referred
to works by H.J. Kushner and P. Dupuis.

1.2 Martingale techniques

In the stochastic dierential game Problem 2.1.1 to be formulated in Chapter &pa r
resentativeth Player faces the optimization problem with expected rdwa

J(r,u) := E'[R(r, u)|.A], (1.2.1)

when all other Players’ strategies are given. To simplifyation, this is a typical
guestion of finding a stopping ruté and controlu* to maximize the one-dimensional
expected reward (2.2.1) over all stopping rutes.(t, T) and all admissible controls
ue % . The reward procedRis defined as

TAT
Ri(r,u) := f h(s, X, u)ds+ L(7)Lz<1) + ELjr=Tys (1.2.2)
t
Throughout this section, notations likeR, h, L, and¢ are one-dimensional.

Classical martingale characterization of the optimizapooblem views optimal stop-
ping and optimal control separately.

For every fixed admissible contro)] denote

t
Q(t, u) = E'[Ro(r*, W)|.#] = sup J(r,u) +j; h(s, X, ug)ds (1.2.3)

€S,
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It is optimal to stop the first time whe@(-, u) meetsRy(-, u). The stopped supermartin-
galeQ(- A 7,u) is aP"-supermartingale with respect {& }o<t<,, and is a martingale
if and only if  is optimal. Q(-,u) is called the Snell envelope &(-,u). Optimal
stopping theory using Snell envelope does not require tlvarcebeing Markovian in
the state process.

For every fixed stopping time, denote

t
V(t, u) := supJi(r, u) +f h(s, X, ug)ds
uew 0 (1.2.4)

t
= SUPEY[R(, U)|7] + f h(s X, uds
uew 0

V(-, u) is aP"-supermartingale with respect{t&}o«<,, for everyu, and is a martingale
if and only if uis optimal.

Once obtaining the supermartingale property¢f u), with the help of Doob-Meyer
decomposition of super(sub)martingales, we can decompose

V(-,u) = V(0,u) + M(-,u) — A(-, u) (1.2.5)

as summation of 8"-martingaleM and decreasing procesé. A martingale represen-
tation theorem further represe¥y-, u) = fot (ZY)dBY as a stochastic integral integral
with respect to to thé!-standard Brownian motioB". It turns out thatz" = Z is
irrelevant ofu. A(-, u) can be shown to satisfy

t
A(t,u) — At,v) = - f (H(s X, Zs,us) — H(s, X, Zs,vs))ds 0< t < 7, (1.2.6)
0

for any controlay, v e % . The function or functionaH is the Hamiltonian defined as
H(t, X, z u) := zo~1(t, X) f (t, X, u) + h(t, X, u). (1.2.7)

Derived from the martingale property of the optimal contrgllocally maximizing the
HamiltonianH equates to globally maximizing the expected reward. Therle& made
of much more random noise than the former. The existence ohtxa u* that maxi-
mizes the Hamiltonian is called "Isaacs’ condition”. Nesigsof "Isaacs’ condition”
for maximizing the expected reward is called the "stocleastximum principle”.

For these martingale theorems to apply, most works so famasdoundedness of
the rewards as a technical assumption, though the gendiefl isghat the bounded-
ness assumption can be relaxed. The arguments in the sutiedy Bavis (1979) [12]
indeed proceed as well if the rewards have at most polynamialth in the supremum
of the historical path of the state process.

Readers are referred to Karatzas and Shreve (1998) [34hfdl &velopes of optimal
stopping problems, to Karatzas and Shreve (1988) [33] andZR&nd Yor (1999) [44]
for Brownian motion and continuous time martingales.
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1.2.1 Snell envelope

A typical optimal stopping problem looks for a stopping rutehat attains supremum
in

Y(t):= sup E[R|#],0<t<T. (1.2.8)

e (1,T)

The terminal timeT is finite. The filtration{.%;}o<t<7 Satisfies the usual condition. The
procesqR:}o<t<T IS interpreted as a player’s reward at every tim&he value process
Y is the best expected reward possible the player could géidysing to stop between
current timet and terminal timeT . If assumingR is bounded from below and right-
continuous, thelY has an RCLL modification which shall still be denoted by thesa
symbol. The process is the smallest RCLL supermartingale dominatidgro credit
Snell's contribution to solving this optimal stopping ptetm, Y is called the Snell

envelope oR. If further more assuming[ sup Rg|.%;] < oo, the optimal stopping rule
s<t<T
is
T =inf{t < s<T|Rs = Y}, (1.2.9)

the first time reward proce$dmeets value proce&sfrom below.

See Appendix D, Karatzas and Shreve (1998) [34] for detabgubsitions of Snell
envelope.

1.2.2 Doob-Meyer decomposition

The sum of a martingale and predictable, increasing (dstrgpprocess with respect
to the same filtration is a supermartingale (submarting&\éether the reverse claim
is true or not raises the question of supermartingale (suiimgale) decomposition.

For discrete time martingale, the answer is simple, for #i® $ummands have been
explicitly constructed.

Theorem 1.2.1 (Doob decomposition) Any submartingale=Y{Yy, %n}n-0.1.. can be
uniquely decomposed as
Yn = Mp + Ay, (1.2.10)

the summation of a martingale M {My, Zn}n-01.. @nd an predictable, increasing
sequence A {An, Znln=01...-

Proof. Takinng =0, andAn+l =An—-Yn+ E[Yn+1|yn] = Zn: E([Yk+1|fg.k] - Yk)- O
k=0

In continuous time, there has not been any analogue cotistmuaf the increasing
(decreasing) process. A natural resort would be approxigabntinuous time mar-
tingales using the discrete time result. To show convergehthe approximating se-
guence of discrete time monotonic processes, additiosahastions are required. A
most commonly used condition is a right-continuous supetingale (submartingale)
of class%.Z or classZ.
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Definition 1.2.1 The collection of all stopping timesbounded between 0 and a fi-
nite positive number T (respectively, infinity) is denotsd%t (“0.). A right-
continuous procesY;, .Zihi-o is said to be of clas, if the family{Y;}.c », . is uni-
formly integrable; of class7.Z, if the family{Y;}.c.#,, is uniformly integrable, for
every0 < T < co.

Theorem 1.2.2 (Doob-Meyer decomposition) Let a filtrati¢# }i-o be right-continuous
and such that%, contains allP-negligible sets inZ. If a right-continuous submartin-
gale Y= {Y;, Zt}t=0 Iis of classZ.Z, then it admits the decomposition

Y; = M+ A, t> 0, (1.2.11)

as the summation of a right-continuous martingale=MM;, .-%};-0 and a predictable,
increasing process A {A:, Zi}i=0. Under the condition of predictability of process A,
the decomposition is unique. Further, if Y is of clagsthe M is a uniformly integrable
martingale and A is integrable.

Without the assumption of clagg.#, the decomposition is also valid, bit being
only a local martingale is the price to pay.

1.2.3 Martingale representation theorems

The Ito integral of an adapted, square-integrable procébs@spect to Brownian mo-
tion is a local martingale. Conversely, is a (local) mardlegM, {.#;}} a stochastic

integral of some adapted, square-integrable process @sffect to a certain Brownian
motion? The answer is given by the martingale represent#timorems.

In 1953, J. L. Doob answered yes. M is a d-dimensional continuous local mar-
tingale on the filtered probability spac@,(#,P) with filtration {#}, then one can
construct, on a possibly extended, (#,P) with a possibly extended filtrationZ},

a d-dimensional Brownian motiokV, and ad x d matrix Z of measurable, adapted,
square-integrable process, such that.s.M has the representation

t
Mt = f ZSdWS’ (1.2.12)
0

as the stochastic integral @fwith respect to the Brownian motioW, which is not
prefixed. The Brownian motiow is constructed according to the local martingslle
Since the the original probability spac@,(#,P) might not be enough to support the
Brownian motion required for the representation, an extensight be necessary.

Preferrably, we would like all martingales on the same filteprobability space be
stochastic integrals with respect to one single Browniationo This is true if the
(augmented) filtration is Brownian. M is ad-dimensional RCLL, square-integrable
martingale on the filtered probability space, (%, P) with (augmented) filtratiof.7}
generated by a Brownian motid) then there exists d x d matrix Z of measurable,
adapted, square-integrable process, suchPtzas. M has the representation

t
My = f ZdBs. (1.2.13)
0
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The Brownian motiorB is the same for alP-martingales oif.%}. Itis the given Brow-
nian motion that generate#;}.

In the setting of Chapter 2, we need to represent the maléipgatM (-, u) of the value
process/(+, u) in (1.2.5) to solve the optimization problemvl(:, u) is aPY-martingale
with respect td.%}. It had better take up the integral form

t
M, = f ZdBY, (1.2.14)
0

for someP!-standard Brownian motioB". This has been confirmed with (Theorem
3.1, Fujisaki, Kallianpur and Kunita (1972) [24]). Theirstgt is not covered by the
previous two representation theorems, because the BrowmigionB" is the prefixed
drifted P-B.M. and standar@“-B.M. defined in (3.1.10), anfi#;} is not necessarily
generated b" due to randomness in the drift ddeient.

1.3 Backward stochastic diferential equations

Backward stochastic flerential equations were proposed for the first time in Bismut
(1973) [7] as means to solve stochastic optimal control jgrab. The two subjects
agree in terms of seeking adapted strategies to achievenindrgoal. In the set-
ting of Chapter 3, the value process of a BSDE turns out to be/dfue process of a
control problem, the proof of which require boundednesefrewards in most pre-
vious works. Terminal reward of the control problem corgsgs to terminal value of
the equation, Hamiltonian corresponds to the driver, amty @xercise rewards cor-
responds to reflecting boundaries. Once linked a backwardtia, not only proba-
bilistic tools but also analytical techniques can help.sSTBSDE approachffers more
flexibility, though somewhat less intuitive.

We will focus on how diferent types of BSDE's are connected to various optimal con-
trol and stopping problems, as summarized in tables (1d)&2) below.
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Table 1.1: correspondence between types of stochafiirefitial games and types of
BSDE's.

Game BSDE |
one person’s optimal control 1-dim, no reflection
zero-sum game of control 1-dim, no reflection
one person’s optimal stopping 1-dim, lower reflecting boundary
Dynkin game
(zero-sum game of stopping) 1-dim, double reflecting boundany
N-player non-zero-sum game of contrfoN-dim, no reflection

| risk-sensitive control | quadratic driver |

Table 1.2: correspondence between parameters of stacliifférential games and
parameters of BSDE's.

Game BSDE |
number of rewards to optimize dimension

value process value process

Hamiltonian driver

maximum duration of game terminal time

terminal reward terminal value

early exercise reward reflecting boundary

regret from suboptimal exercise time | the increasing process

Brownian noise from state process Brownian noise added to the equation
instantaneous volatility of value process/olatility process

1.3.1 Birth of BSDE

A control problem with expected reward

]
1) = B f h(s X, Us, vo)ds+ & 7] (1.3.1)
t

identifies with BSDE
T T
YUV(t) = €+ f H(s, X, Z"Y(s), (u, V)(t, X, Z*"(s))ds— f Z*(9)dB;, 1.3.2)
t t

in the sense that the two processés, v) andY"V coincide. For the control problem,
h is an instantaneous reward rate, @&nid the fixed terminal reward at time. The
HamiltonianH is defined as

H(t, X,z u,v) := zo1(t, X) f (t, X, u, V) + h(t, X, u, v). (1.3.3)

By starting from a simplified version which can be solved bytingale representation,
Pardoux and Peng (1990) [43] used Picard iteration to shastemce of an adapted
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solution, and similar inequalities used in the iteratiostiow uniqueness of such solu-
tions, to a backward equation of the general form

T T
Y(t):§+j: g(s,Y(s),Z(s))ds—j: Z(s)dBs, (1.3.4)

where the functiorg is uniformly Lipschitz in theY andZ arguments. The two pa-
rameterg andé in (1.3.4) are called "terminal value” and "driver” of the B&. The
solution consists of "value proces¥’and "volatility process’Z.

Both existence and uniqueness can alternatively be provéressame time by the
contraction method as in El Karoui, Peng and Quenez (1997) They first pick two
arbitrary adapted, square-integrable proced8eand Z° in the driverg to solve the
equation

T T
1y _ 0 0 _ 1
Yit) = ¢+ ft a(s Yo(s), Z2%(9)ds ft Z'(s)dBs. (1.3.5)

for (Y1, Z%). As in Pardoux and Peng (1990) [43], the procgssomes from represen-
tation of the martingale

T T t
0 0 a. | — 0 0 1
E §+j; a(s, Y (s),Z (s))ds{Jt} =E §f+f0 a(s, Y (9),Z°(9))ds +j; Z*(s)dBs.
(1.3.6)
The proces¥? is defined as
T
vio =le+ [ o Y°(s>,z°(s»ds(%]
t
. . (1.3.7)
=E|&+ fo a(s, YO(S),ZO(S))dS{%] - fo (s Y%(9), 2%(9))ds

The contract method argues existence and uniqueness ¢ibsaio equation (1.3.4)
by proving the mapping fromvC, z%) to (Y1, Z%) is a contraction, thus having a unique
fixed point (Y, Z). The fixed point solves equation (1.3.4).

The contraction method is equivalent to Pardoux and Pe®§8 proof. Besides mea-
surabilities and integrabilities, a crucial technicaluasgtion of the two proofs is the
driver g being Lipschitz in both value procegsnd volatility procesg, uniformly in
timet.

Under those assumptions above, and in dimension one, C@oparheorem (sec-
tion 2.2, El Karoui, Peng and Quenez (1997) [20]) statesdHhatger terminal value
and a larger driver will produce a larger value process of BBSConversely, that a
larger value process has to be produced by a larger termahat \and a larger driver
is called the Converse Comparison Theorem. Briand, CodietMémin and Peng
(2000) [8] proved a Converse Comparison Theorem for onesdgional BSDE with
Lipschitz driver. Comparison Theorems and the conversemwiolding true, deter-
mines a necessary andfcient condition for the optimal control(s).
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An optimization problem considers one contwobnly and the other contral dis-
appears in (1.3.1). An optimal contral is chosen among all admissible controls to
maximize

T
3w = B [ [ hsxuddse

t
If the rewardsh and¢ are bounded, the value procedsof BSDE

3@] (1.3.8)

T T
YU(t) = &+ f H(s, X, Z%(s), u(t, X, Z4(s))ds— f Z"(s)dBs (1.3.9)
t t
can be shown to equd(u) in (1.3.8), with HamiltoniarH defined as
H(t, X, z u) := zo1(t, X) f (t, X, u) + h(t, X, u). (1.3.10)

When technical conditions are satisfied, maximizing HamiinH is equivalent to
maximizing value procesg", which equals expected rewaidfu). Hence a contral’

is optimal if and only ifu* maximizedH(t, x, z, u) among all admissible controls. Bened
(1970) [1] proved achievablity of the Hamiltonian by a measleu*.

In a zero-sum game with expected rewards (1.3.1), one ply@wses contral to
maximizeJ(u, v), and the other player chooses contréd minimizeJ(u, v). A saddle
point is a pair of controlsu(’, v*) such that

J(u,v) < J(u*, v¥) < J(u', V). (1.3.11)

If existing, the saddleu’, v*) attains superema and infima, and identifies sup inf and
infsup in
supir\1/f J(u,v) = ir\1/f supJ(u, v). (1.3.12)
u u

With bounded rewards, if a control pair( v*) satisfy
H(t, X,z u,v) < H(t, X, z u", v") < H(t, X, z U*, v), (1.3.13)

then (%, v*) is a saddle point of the zero-sum game. Existence of cantihalt maxi-
mize or minimize the Hamiltonians in a way like (1.3.13) idled "Isaacs’ condition”.
Necessity of Isaacs’ condition is called the ” Stochastixivieum Principle”. Compar-
ison Theorem of BSDE's is used to derivditiency of Isaacs’ condition, and converse
Comparison Theorem for the maximum principle.

A case in optimal control that receives more special treatsis the Markovian case.
In the Markovian framework, where the state proc¥ss the solution to a forward
SDE

t t
xt:xo+f f(s,xs,us)ds+fo-(s,xs)dB‘s‘,OstsT, (1.3.14)
0 0

and where rewards are functions of the state proXessin

T
J(u,v) = E*Y [f h(s, Xs, Us, V)ds+ &
t

3@} (1.3.15)
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expected reward(u, V) is a function of the time and the current value of the state
processX; = X.

Corresponding to Markovian setting of a control probleraréis the forward-backward
system of stochastic filerential equations (FBSDE)

{Xtvx(s) =x,0<s<t;

dxt,X(s) — U(S» Xt,X(S))/d BS’ t<s< T, (1316)

and

T T
YHX(9) = £(XM(T)) + f g(r, X¥X(r), Y¥X(r), Z4*(r))dr —f ZY(NdB,,t<s<T.

S

(1.3.17)
As an application of Ito’s formula, if a functiopsolves the PDE
oy(t, X) + . y(t, X) + g(t, X, y(t, X), o’ (t, X)Oxy(t, X)) = O;
(L, X) + Y(t X) + gt X, Y(t, X), o' (t, X)IxY(t, X)) (1.3.18)
Y(T, X) = &(X),
where« is the infinitesimal generator
1
x= ) S0 00 + D it Yox. (1.3.19)
1] i
then
(Y, Z5) = (y(, X)), 07 (6, X2)dey (-, X)) (1.3.20)

solves the forward-backward system (1.3.16) and (1.3.17).

PDE (1.3.18) is the renowned Feynman-Kac formula that IPR&’s to probability.

1.3.2 The role of reflecting boundaries

An optimal stopping problem looks for a stopping time to nmaizie the expected re-
ward

Jt(T) =E [f h(S, X)dS+ L(T)]].‘T<T| + ‘f]]'i‘f:Tl
t

In addition to running reward cumulated at ré&tef a player sticks to the end of the
game, he receives a terminal rewdrdf he decides to quit at any earlier stopping time
7, then terminal reward is replaced by an early exercise rewércelated to timer of
quitting.

%} (1.3.21)

If the early exercise reward is progressively measurable and continuous, and as time
is up if L(T-) is not above terminal rewagd the solution to the BSDE

Y(t) =&+ f h(s)ds— fT Z(9)dBs + K(T) — K(t);

! L (1.3.22)

Y(t) > L(t),0<t<T, f (Y(t) = L(t)dK(®) = 0
0
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provides the value process of the optimal stopping proble®.21) and its optimal
stopping rule. That is,

7. (1.3.23)

Y(t) = SUpE [f h(S)dS+ L(T)ﬂ[T<T] + fﬂ[T:T]
€S t

Since a player can always quitimmediately at tiraed leave with an early exercise re-
wardL(t), the maximum reward he could get never falls below he optimal stopping
rule can be shown as

=inflt<s<T:Y() <LO}AT, (1.3.24)

the first time when early exercise reward meets the best cep@ssible from below.
Intuitively, the proces is interpreted as the cumulative profit missed for stickimg t
the game after the optimal time to quit, hence being incnggisi timet. When play-
ing the game before the optimal stopping time whemeetsL, there is no regret, so
K is flat. If the player is asleep at the optimal stopping time stifers from earning
less profit than could be, 36 increase accordingly. Seeing from the equation (1.3.22),
whenever the value proce¥ss about to drop below, the increasing procegskicks

Y up with a minimal strength.

The procesd. in (1.3.22) is called a "reflecting boundary”, "reflectingrbar”, or
simply "obstacle”. Since the value process in the optinidzaproblem can never be
smaller than the early exercise reward_ is referred to as a "lower reflecting bound-
ary”. A reflecting boundary is an additional term in BSDE'saimcommodate an early
exercise privilege in optimization problems. A BSDE withedlecting boundary or
reflecting boundaries is said to be reflected.

A general form of equation (1.3.22), the reflected BSDE

T T
()= ¢+ f o(s V(9. Z(9)ds f Z(9)dBs + K(T) — K(t);
t t (1.3.25)

.
Y() > L(t),0<t<T, f (Y(t) - L())dK(t) = O.
0

has been solved by El Karoui, Kapoudjian, Pardoux, Peng areh€x (1997) [19],
in dimension one. With Lipschitz driveg, the solutionY to the equation (1.3.25) is
connected to the optimal stopping problem as

Y(t) = supE [ [ ot Y9, 29N LOeer + e
€S t

3@} (1.3.26)

The optimal stopping rule* is the first hitting time of the lower reflecting boundary.
Tr=inflt<s<T:Y(S <LMIAT. (1.3.27)

El Karoui, Kapoudjian, Pardoux, Peng and Quenez (1997)d&8jonstrated existence
of solution to equation (1.3.25) with two methods - contiatand penalization.
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As for equation (1.3.4) without reflection, the contractinathod views solutionY( Z)
to equation(1.3.25) as a fixed point of the contraction nagpiom two arbitrary
adapted, square-integrable procesgeandz® to (Y2, Z%) defined via

T T
Vig=e+ [ ol V(9. 229)ds- [ 298+ KT - KA
! . ! (1.3.28)
WmZMQOSBH:f(Wm—L@Nszo
0

With the help of the theory on optimal stopping reviewed iotgm 1.2.1, the condi-
tional expectation

| [ o6 Y9, 229)s+ LY + €81m

%] (1.3.29)

with optimal stopping time* from (1.3.27) is a supermartingale, hence admitting the
Doob-Meyer decomposition of continuous time martingales

B [ [ o8 Y9, 2905+ LN + 84|
0

t
1 !
+LZ@%SK®
(1.3.30)

5| [ o6 Y9, 295+ L + €81

The termK? is the increasing process from the decomposition, Zhdomes from
representation of the martingale part. Define a provéss/

Y = E [ [ o8 V9. 2295+ L + 1o

%} (1.3.31)

The triple (Y1, 2%, K') satisfies (1.3.28).

The penalization method views solutio¥{ Z) to equation(1.3.25) as strong limit of
solutions{(Y", Z")}>> ; to the penalized equations

T T T
Y"(t) =§+j: g(s,Y”(s),Z"(s))ds—ft Z”(s)st+nft (Y'(s9)-L"(s))"ds (1.3.32)

BSDE (1.3.32) is the non-reflected one solved by Pardoux and PL990) [43]. Proof
of convergence mainly relies on Comparison Theorem to gui@eathat the sequence
{Y"} is increasing hence having a pointwise limit. Lipschitz dition on the drivergy

is also required for uniform? boundedness div"}.

In dimension one, El Karoui, Kapoudjian, Pardoux, Peng aodr@z (1997) [19] is
able to prove the Comparison Theorem for the reflected emuati
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With a reflecting boundary, Feynman-Kac formula (1.3.18)tfe forward-backward
Markovian system (1.3.16) and (1.3.17) is modified to be @tianal inequality. If a
functiony solves the variational inequality

ma)({ L(tv X) - y(t’ X), aty(tv X) + %y(tv X) + g(tv X, y(tv X)v U,(tv X)axy(tv X))} = O:

Y(T. %) = &(%),
(1.3.33)

wheres/ is the infinitesimal generatorin (1.3.19), thefX, %) as in (1.3.20) satisfies
the system of forward equation (1.3.16) and backward egpuati

YIX(9) =E(XX(T)) + f " g X, YR, 2 dr f " 248
+ KY(T) - K¥(9),t<s<T.

(1.3.34)

Rigorous discussion of the variational inequality can henfibin section 8, El Karoui,
Kapoudjian, Pardoux, Peng and Quenez (1997) [19].

A Dynkin game is a zero-sum game of stopping, initiated by lhyrand Yushkevich
(1968) [17]. Consider a Dynkin game with pdio

TAD
Rt(T,p) = f h(S, X)d S+ L(T)]]-{T<T,T§p| + U(p)]].‘pﬁr} + f]]'iT/\P:Tl' (1335)
t

Player | chooses stopping timet which he quits the game. Player Il chooses stopping
timep. Soon as either player quits, the game is ended. ThefR{0p) is the amount
that Player Il pays Player | at the end of the game. If Playehniktles to end the game
at timer before Player Il does, he receives amout) + £ from Player Il. If Player

[l quits the game first, he pays Player | amoUrfp) + £&. The random quantitiR(r, p)

is reward for Player | and cost to Player Il, which should #fer be maximized by
Player | and minimized by Player Il. To average over all sc@saoptimize instead
the expected payb

TAD
Jt(T,p) = E[f h(S, X)d S+ L(T)]]-{T<T,T§p| + U(p)]]-{psrl + é‘:]]-{T/\p:TlL%]' (1336)
t

Saddle point of this Dynkin game is a pair of stopping timesd*), such that
J(r,p") < (7", p") < I(7, p). (1.3.37)

The saddlet", p*) attains superema and infima, and identifies lower valuergunid
upper value inf sup in

V := V = supinf J(r, p) = inf supJ(r, p) = V. (1.3.38)
T P P
In case Player | chooses to stop immediately at current tjrhe receives paybL(t)

from Player Il. In case Player Il chooses to stop immediaaelsurrent time, he pays
paydf U(t) to Player I. When existing, valu¢ of the game as Player I's maximum
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reward and Player II's minimum cost is always abavand belowd. For this Dynkin
game, it sifices to consider only early exercise rewalds U.

When early exercise rewarisandU are continuous, the value proceésf the dou-
blely reflected BSDE

T T
Y(t) =&+ J: h(s, X)ds— J: Z(9)dBs+ K*(T) — K*(t) = (K™(T) = K7 (1));

T T
L) <Y(@) <U(),0<t<T, f (Y(t) — L)dK() = f U@ -vY@®)dK®) =0

° ° (1.3.39)
provides the value processof Dynkin game with expected paffd1.3.36). The in-
creasing proces{* is the minimal force that maintains value proc&sabove lower
reflecting boundary.. K* is an additional term for early exercise privilege at time
by Player I, to maximize his reward. For early exercise fege at timep by Player Il
to minimize his cost, a minimal cumulative for&e, which is an increasing process,
pushes value proce¥sdownwards whenever it hits upper reflecting boundarfyom
below.

The connection between Dynkin games and doublely reflecsERs was explored in
Cvitanic and Karatzas (1996) [10]. They proved existenakwariqueness of solution
to the equation

T T
Y =+ f o(s V(9. Z()d s f Z(9)dBs + K*(T) — K*(t) = (T) ~ K-(1);

T T
L) <Y(@) <U(),0<t<T, f (Y(t) — L(t)dK(t) = f (U) - Y()dK(t) = 0.
° ° (1.3.40)
with Lipschitz driverg. The authors demonstrate uniqueness of the solution with bo
contraction and penalization methods.

1.3.3 Growth rates beyond Lipschitz

Risk-sensitive controls were initiated by Whittle, Benssan and coworkers, among
others. Receiving a controlled random rewBd risk-sensitive player takes not only
the expectation but also the variance of his reward intoidenation. El Karoui and
Hamadene (2003) in [18] link risk-sensitive control prerls to BSDE's with an addi-
tional term quadratic in the volatility process.

Consider a general risk preference fiméentd. For the Player with reward process
R:(u) controlled byu, the quantity

BIR(UIF] + 5VarRUIF] (1:3.41)
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is about equal to
% In E'[exp(6R:(U)}|. 7], (1.3.42)

when absolute valué| is small. If9 > 0 (< 0), a larger variance contributes to a larger
(small) expected reward, hence a higher risk is more (lesferable to the Player.
The Player is called risk-pronedf> 0, and risk-averse #f < 0. If = 0, the variance
term disappear from the expected reward, then the Playaidssbe risk-neutral. So,
instead of maximizing the expected reward, our risk-samesPlayer maximizes his
expected exponential reward

Ji(u) = E"[exp{oR (W)} A]. (1.3.43)

Let R(u) take a generic forr‘r:,(T h(s, X, ug)ds + &, whereX is the underlying state
process. LeHy be Hamiltonian as

Ho(t, X, z U) := zo1(t, X) f (t, X, u) + 6h(t, X, u). (1.3.44)

Solution (Y, Z") to the quadratic BSDE

T 1 T
YU(t) = 06 + ft (Hils % 2%(9, u(s X 249) + 52%(9)ds- ft 7%(s)dB. (1.3.45)

is connected to the risk-sensitive control problem by tlemtdy
e” = J(u). (1.3.46)

We notice from expression (1.3.43) thais equivalent to a rescaling multiplier of the
rewardR;, it suffices to to solve BSDE (1.3.45) for the case 1.

More generally, if the value processegs) solve

T T
Yty =& + f Y(S)((s I0gy(9). 9 /y(9)ds— f A9dBe. (1.3.47)
t t

then by Itd’s formula, Y, Z) defined via

Y(t) = logy(t);
{Z(t) = 2(1)/y(t) (1.3.48)
solve BSDE
o= | (o V(9,209 + 5297 I " 2(9ds, (1.3.49)

Equation (1.3.47), thus equation (1.3.49), has a solutioenithe driveg and the ter-
minal valueg are bounded. Existence of solution to (1.3.47) is due todecdnd Peng
(1990) [43]. Since the transformation betweéandy in (1.3.48) is monotonic, when
Comparison Theorem is needed for equations with quadratdigty, one can compare
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solutions to equations of the form (1.3.47), then concludgdnsforming back to solu-
tions to (1.3.49). Again, comparison can be applied assgithizitg and¢ are bounded.

Above is a brief illustration of connections between rigksitive controls and quadratic
BSDE's. A zero-sum game corresponds to a one-dimensionaE38nd a non-zero-
sum game a multidimensional equation. Rigorous formutediad technical treatments
to the risk-sensitive control using quadratic BSDEs candasd in El Karoui and
Hamadéne (2003) [18].

Kobylansky (2000) [39] considers one-dimensional BSDHi®ge drives have quadratic
growth rate, not necessarily a quadratic term, in the \dlafprocess. Her basic
idea was the exponential transformation (1.3.48), whicjuires some condition like
bounded parameters. Up to an exponential change, she apjatex a quadratic driver
with a monotonic sequence of Lipschitz drivers. Solutiothi®quadratic BSDE turns
out to be limit of a monotonic sequence of solutions. It was@arison Theorem that
guarantees monotonicity of solutions to the sequence abappating equations.

Even for controls indferent to risk, since the driver of a BSDE corresponds to the
Hamiltonian of a control problem, more general growth ratethe driver allows for
growth rates of the game rewards.

1.3.4 Dfiference in several dimensions

It would be tempting to extend all results on one dimensi&&IDE’s to multi-dimensions,
for example Comparisons, reflections, and higher growtssratne reason being the
correspondence between multidimensional BSDE’s and eoo-gum games.

Consider amN-Plyer non-zero-sum stochastidfeirential game of control. Each player,
indexed byi, chooses a contrak. Playeri receives a rewarR (ug, - - - , uy) related to
all theN Players’ controls. The Players’ rewards have the form

_ T
Ri(ug, Uy, - - - ,uN)zf hi(s, X, Uy, U, - -+ ,uN)ds+&1%],0<t<T,i=1,---,N.
t

(1.3.50)
For Playeri, he receives a cumulative reward at rat@nd terminal reward;. Every
Playeri aims at optimizing his expected rewal'd defined as

IHug, Uz, -+, Un) = B2 N R ug, U, -+, Un)LFA;
JZ(U]_, Up, -, UN) — EUI’UZ»""UN[RZ(U]_, Ug, -, UN)|<%]1
(1.3.51)
JN(ulv u27 T, UN) = EULUz,"',UN[RN(ul’ UZ, Tt uN)l'%]
Define HamiltoniarH = (Hy, Ho, - -+ , Hy) as
Hi(t, X, Z,Ug, U, -+, UN) ::Zio—il(t’ X)f(t’ X’ Ug, Uz, - -, UN) (1 3 52)

+hi(t,x,U1,uZ’-.. ,UN)!i :1,...’N.
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If the N-dimensional processes

ULz, N (Yiu,uz,w,uN, e Y’L\J‘LU?’“'*UN), (1.3.53)

and
ZUlp. N (Zillsuzv'"“N, . Z"\‘ll’UZ*""“N) (1.3.54)

solve theN-dimensional BSDE
T
YY) =6+ f Ha(s X, Z5 (), (U, U, -+, un) (6 X, 24 9(s))ds
t
T
- f Z4t2 U (g), dBg;
t
T
Yyl N(t) =g + f Ha(S X, Z5 9 (9), (Up, Uz, -+, U (t, X, 254 () ds
t

-
- f 24t N (9),d B,
t

)
Vg =g+ [ (S X ZE 9, (U X 2 ()
t

J
— f ZU1»U2,"',UN (S)Nd Bs,
t (1.3.55)

then the value proced8+Y2-Un of the BSDE provides the value proceks;, up, - - - , Un)
of the non-zero-sum game.

A multi-dimensional BSDE of the general form
T T

V) =+ [ (s X ¥(9.2(9)ds- [ Z(9udey
t t

T T
Yalt) =62 + f Ga(s X, Y(9). Z(9)ds— f 2(9),dBy
. t (1.3.56)

T T
Ya(t) =éy + f oS X, Y(9). Z(9)d s~ f Z(ndBs

is thus of interest. The case of Lipschitz drivge (g1, - - - , gn) has been covered in
Pardoux and Peng (1990) [43]. One might ask for extendingiteis of higher growth

rate, like Kobylanski's 2000 work [39] in dimension one. Weall that Kobylanski

concluded convergence of the approximating sequence lwjiisgds monotonicity via

Comparison Theorem. But in several dimensions, Lipschitzvth is far from enough
for the Comparison Theorem to hold. An equivalent conditmapply the Comparison
Theorem is provided by Hu and Peng (2006) [31].
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Hamadéne, Lepeltier and Peng (1997) [26] worked on the Maak case, assum-
ing that the driveg(t, X, y, 2) is a continuous function, with growth rate polynomial in
X, and linear iny andz. They also approximated the driver with Lipschitz driveirst
deriving a weakly convergent subsequence of solutionsst@piproximating equations
by weak compactness, then arguing that the weak limit isdihdtrong under anl’?-
dominance” assumption. Théif-dominance” assumption is not necessary and can be
removed.

In order to modify a non-zero-sum game with rewards (1.3té@)corporate optimal
stopping features, reflections have to be added td\ttémensional (1.3.56). When a
reflected BSDE had only one dimension, El Karoui, KapoudjRerdoux, Peng and
Quenez (1997) [19] provided two methods - contraction anthfization. The pe-
nalization method does not help with solving multi-dimemsil equations, again due
to the lack of Comparison Theorem. The contraction methgdires at most Lips-
chitz growth of the drivers. In Chapter 3, we shall explore tonnections between
non-zero-sum games of control with optimal stopping fesgwand multi-dimensional
BSDEs with reflection. Existence and uniqueness of solattorsuch equations will
be shown for Lipschitz drivers. In the Markovian framewosle shall prove existence
of solutions to the equations with growth rates linear in\thkie process and in the
volatility process, and polynomial in the historical maxim of state process.



Chapter 2

Martingale Interpretation

Chapter 3 of the dissertation is adapted from Karatzas af2009) [32]. In that piece
of work, we solved a non-zero-sum game of control and stapfy identifying value
process of the game with solution to a multi-dimensionaértéid backward stochas-
tic differential equations (BSDE). There, we prove existence oilibgum strategy,
assuming Isaacs’ condition. The main tools are analytiggdg to prove existence of
solution to the BSDE, and Comparison Theorem to prove opitynaf controls from
Isaacs’ condition. The privilege to use heavy analysis isdvantage of the BSDE
approach, for it is easier to solve the optimization proldemder looser technical con-
ditions. But our concern is, that too much heavy analysisunBSDE chapter might
disguise intuitions. To remind ourselves of the nature efghoblem we solved, this
chapter presents an equivalent martingale charactenizatiNash equilibrium point of
the non-zero-sum game in question. Startififrmm this martingale characterization,
stochastic maximum principle becomes a handy proposition.

Without controls, the non-zero-sum game of stopping wagesbby Bensoussan and
Friedman in as early as 1977, using variational inequalitiithout stopping, a mar-
tingale approach to the non-zero-sum game of control cammiedfin Davis (1979)
[12], whose treatment will help us provefBaiency of Isaacs’ condition for the exis-
tence of equilibrium controls. This chapter is partly alsmlow-up of Karatzas and
Zamfirescu (2008) [38], which gave martingale charactéonaof saddle point of a
zero-sum game where one player controls and the other skapghe existence of a
saddle point, the lower value and upper value of the game ttagquate each other.
Karatzas and Zamfirescu (2008) [38] argued the coincidehseveral stopping rules.
For the existence of an equilibrium, we no longer need torfzadetween sup inf and
inf sup, whereas the fliculty switches to maximizing more that one expected rewards
with the same set of strategies. We will take the way Karagras Sudderth (2006)
[35] passes from a game where each player’s reward terndibgtbimself to a game
of interactive stopping. But to accommodate path-depetreéarards, Snell envelopes
named after Snell (1952) [46], instead of stopping regiandfarkovian rewards (c.f.
Shiryayev (1979) [45]), was used to derive optimal stoppirigs.

25
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2.1 Mathematical layout

The rigorous model starts withdrdimensional Brownian motioB(-) with respect to
its generated filtratiofi#; }o<t<t 0N the canonical probability spac@,(#, P), in which

Q = CY[0, T] is the set of all continuoud-dimensional function on a finite determin-
istic time horizon [QT], .# = %(cd[o, T]) is the Borel sigma algebra, aridis the
Wiener measure.

For everyt € [0, T], define a mappingy : C[0,T] — [0, T] by ¢:(y)(s) = y(SA 1),
which truncates the functione C[0, T]. For anyy® € C[0, T], the pre-image; *(y°)
collects all functions irC[0, T] which are identical tg® up to timet. A stopping rule
is a mapping : C[0, T] — [0, T], such that

{yeC[0, T]: =(y) <t} € 6 (£ (C[0, T]). (2.1.1)
The set of all stopping rules ranging betwegeandt, is denoted by (1, t2).

The state process$(-) solves the stochastic functional equation
t
X(t) = X(0) + f o(s X)dBs, 0<t<T, (2.1.2)
0

where the volatility matrixr : [0, T] x Q — RYx RY, (t, w) — o(t, w), is a predictable
process.

Assumption 2.1.1 (1) The volatility matrixo(t, w) is nonsingular for evernyt, w) €
[0, T] x Q;
(2) there exists a positive constant A such that

|orij (t, w) = oij (t, w)| < A suplw(s) — w(s)l, (2.1.3)

O<s<t
forall1<i,j<d,forallte[0,T],w,we Q.

Under Assumption 2.1.1 (2), for every initial valXg0) € RY, there exists a pathwise
unigue strong solution to equation (3.1.2) (Theorem 14lI&tE(1982) [21]).

The control vectou = (U, - - - , uN) take values in some given separable product met-
ric spacesh = (Ag, X, Ay). We shall assume that;, x, Ay are countable unions of
nonempty, compact subsets, and are endowed with-thlgebras»;, x, <7 of their re-
spective Borel subsets. In this chapter, we use th@&/set?; x - - - x % of closed loop
control vectors in the form ofi, = u(t, w) that is anN-dimensional non-anticipative
functional of the state proces{()), for 0 <t < T, whereu = (u* x --- x uV) :
[0,T] x Q@ — A is a deterministic measurable mapping.

We consider the predictable mapping
f:[0,TIxQxA —RY

(2.1.4)

(t w, p(t, w)) — (L w,ut, w)),

satisfying:
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Assumption 2.1.1 (continued)
(3) There exists a positive constant A such that

oYt W) f(t, w,u(t, w))| <A, (2.1.5)

forall0 <t <T,we Q, and all theA-valued representative elemenif, ) of the
control space . B

For generic control vectong = u(t, w), definePX, a probability measure equivalent to
P, via the Radon-Nykodim derivative

u t t
% Ty = exp{ f o (s X)f(s X, ugdBs - % f lo (s X)f(s X, gS)IZdS}.
0 0
(2.1.6)
Then by Girsanov Theorem,
t
By = B[—f a‘l(s,x)f(sx,gs)ds 0<t<T, (2.1.7)
0

is aPY-Brownian Motion with respect to the filtratiofZ;}o<t<t. In the probability
space Q, .7, P) and with respect to the filtratiohZ }o<t<T, the pair K, BY) is a weak
solution to the forward stochastic functional equation

t t
xt=x0+f f(sx,gs)ds+fa(SX)dBE,OSth. (2.1.8)
0 0

In the three subsequent sections of this chapter, we shdil,sh a sequel, optimization
problems with the following rewards.

Problem 2.1.1 (N = 1, one player’s optimization)

TAD
Ri(r, u) := f h(s, X, us)ds+ L(7)Lir<p) + 17lz=p). (2.1.9)
t

In Problem 2.1.1y, = w = u(t, w) is a control in% = 741 =: %, p is a stopping rule
in ., andr is a stopping time in(t, p) for t < p. Both the controli and the stopping
rule 7 is at the player’s choice. The cumulative reward fate[0, T] x Q x A — R,
(t, w, u(t, w)) - h(t, w, u(t, w)), is a predictable processtinon-anticipative functional
in X(-), and measurable function jft, w). The early exercise rewatd: [0, T] x Q —
R, (t,w) — L(t,w) =: L(t), is a{.%}o<t<T-adapted process. The terminal rewaig a
real-valued%,-measurable random variable. The rewangds andy, are a.e. bounded
forallw e Q,0<t < T, and all admissible controls = u(t, w).

Problem 2.1.2 (N = 2, two-player game)
TAP
Ri(T.p.U,V) := f hi(s X, Us, Vs)ds+ La(7)Lir<p) + U1(p)Ljp<r<t) + E1Lirnp=T};
t

T/\/J
Rf(r,p, u,v) = f ho(s, X, Us, Vs)dS+ Lo(p)Lip<ry + Ua(T)Lir<pat) + E2Lirpp=T)-
t
(2.1.10)
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In Problem 2.1.2,;, i) = (u(t, w), v(t, w)) is a pair of controls iZ = 24 x % =:
% x ¥, andt andp are stopping rules in”(t, T). The controlu and the stopping
rule 7 is at the choice of Player I. The contreland the stopping rule is at the
choice of Player Il. Player | receives rewaRi(t, o, u, V), and Player Il receives re-
ward th(‘r,p, u, V). The cumulative reward ratés andh, : [0, T] X Qx A; X Ay — R,
(t, w, u(t, w), v(t,w)) - hilt, w, u(t, w), v(t,w)), i = 1,2, are predictable processes in
t, non-anticipative functionals iX(-), and measurable functions it, w) andu(t, w).
The early exercise rewartls= (L1, L)’ : [0, T]xQ — R?, (t,w) — L(t,w) =: L(t), and
U= (U, U [0, T] x Q —= R?, (t,w) — U(t,w) =: U(t) are both{.%}o«<7-adapted
processes. The terminal rewafd= (£1,&2) is a pair of real-valued#t-measurable
random variables. The rewartis= (hg, hy)’, L, U and¢ are a.e. bounded for all
weQ0<t<T,andall admissible controlg = u(t, w) andv; = u(t, w). Here and
throughout this chapter the notatidf means transpose of some matyix

Problem 2.1.3 (N-player game) For i 1, - - - , N, the ith Player’s reward process is

F%(I,g) = f hi(s, X, gs)ds+ Li(Ti)]l{Di] + Ui(T(i))ﬂ[Df\E] + &gy, (2.1.11)
t

where the events E and;D- - , Dy are defines as

E={rj=T,forallj=1,---,N}, (2.1.12)

and
Di ={ri< allofry, -, 7i—1, Tis1, -+, TN), (2.1.13)

and the stopping rules

Tmin = MiN{7y, -+, 7N}, (2.1.14)

and
T() = MMt - Ticg, Tist, 0L TN (2.1.15)
In Problem 2.1.3y, = (uf,---,u) = Ho= (1t (t, w), - -, uN(t, w)) is a control vector

iN% =9 XX, andr = (t1,--- ,7n) IS a vector ofN stopping rules in(t, T).
Fori = 1,---,N, the controlu’ and the stopping rule; is at the choice of théth
player, who receives rewaRl(z, u). The cumulative reward rate ahd= (h,--- , hy) :
[0,T]xQx A = RN, (t, w, u(t,w)) = h(t, w, u(t, w)), is anN-dimensional predictable
process irt, non-anticipative functional iX(-), and measurable functionjift, w). The
early exercise rewards = (Ly,---,Ly) 1 [0, T] x Q — RN, (t,w) - L(t,w) =: L(t),
andU = (Uy,---,UpN) 1[0, T]xQ — RN, (t,w) = U(t, w) =: U(t) are both.% }o<t<T-
adapted processes. The terminal rewaed (&1, - - - ,&n)’ is a vector ofN real-valued
Zr1-measurable random variables. The rewdrds, U and¢ are a.e. bounded for all
weQ,0<t<T,andall admissible controlg = u(t, w).

2.2 A representative player’s optimization

In this section, we will focus on solving a representatiaypl’s optimization Problem
2.1.1 with expected reward

J(r,u) ;= BY[R(r, U).Z#], (2.2.1)
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where the rewardR(r, u) is defined as in (2.1.9). This is a question of discretionary
stopping, finding a stopping rule’ and controlu* to maximize the expected reward
(2.2.1), over all stopping rulesin .#(t, p) and all controlsuin 7. It is the very op-
timization problem that a generith player in anN-player game faces, when all the
other players’ strategies are given.

The following notations will facilitate expositions in gsection.

Notation 2.2.1 (1) When a strategfr*, u*) maximizes (2.2.1), it attains suprema in

Y(t) ;== sup supdi(r,u) = J(r", u"). (2.2.2)
€. (t,p) U

The process Y is called the value process of the optimal @lcartid stopping problem
with expected reward (2.2.1).

(2) For a generic admissible control u, define

V(t,u) :=Y(t) + ft h(s, X, us)ds
0

t
sup suth(r,u)+f h(s X, us)ds (2.2.3)
€. (t,p) U 0

t
sup SUpE'[R(rUIF] + [ h(s X udds
e (t,p) Ue% 0

(3) Since the stopping rules are defined on every pathQ, the choice of an optimal
stopping rule is irrelevant of the control applied. Define

YEWi= SUp 30> KD L0 e (22.4)

We remember thak(t, u) refers to the conditional expectatiBH] L (t) 1<, +71=p)|-F].-
Becausep is an{.#}-stopping rule, the eveni$ < p} and{t = p} are % measur-
able. Onft < p}, J(t,u) = L(t) becausd. is progressively measurable. @Qn= p},
Ji(t,u) = E'[n.%,] = n, because is .#,-measurable. This is why the last identity in
(2.2.4) holds true.

(4) Also for a generial, define
t
Q(t,u) :=Y(t, u)+f h(s, X, ug)ds
0

t
= sup Jt(r,u)+f h(s, X, us)ds (2.2.5)
0

€%

= sup E"[Ro(, u)l-#].
€Sy

(5) The Hamiltonian is defined as
H(t, w,z W) = H(t, w, z u(t, w)) = 201 (t, w) f(t, w, u(t, w) + h(t, w, u(t, w)), (2.2.6)

for0O<t<T,weQ,zinRY, and all admissible controls = u(t, w).
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2.2.1 optimal stopping

In (2.2.4),Y(-, u) is said to be the value process of the optimal stopping problThe
procesQ(, u) defined by equaitons (2.2.5) is the Snell envelop&gtf, u). It is the
smallest RCLL supermartingale dominatiRg{-, u). A proof of results in Lemma 2.2.1
can be found in (Appendix D, Karatzas and Shreve (1998) [3ffe proofs in their
book proceeded with a finite deterministic terminal timet, &so good for a bounded
{% }i-stopping time as the terminal time. To pass to the boundsdbra terminal time
p which is an{.%;}-stopping time, it sffices to multiply the reward with an indicator
1it<py. See the remark at the end of Elliott (1976) [22].

Let t* = 77(u,p) be an optimal stopping rule (stopping time) that attainsremum
in (2.2.5),i.e.,

t

E[Ro(7", u)l#] = Q(t,u) = sup J(x, U)+f h(s X ug)ds (2.2.7)
€SN, 0

The following lemma provides an equivalent characteriratfr*.

Lemma 2.2.1 The optimality ofr* is equivalent to both of the following conditions

altogether:
1)
Q(7", u) = Ro(7", 1), (2.2.8)
or equivalently,
Y('0) = L)L o) + = (2.2.9)

(2) The stopped supermartingal€-@r*, u) is aP"-martingale with respect to# Jo<i<,-

Besidess* has an explicit expression as the first hitting time

T =inf{t < s < plQ(s,u) = Ro(s W)} A p

=inf{t < s<p|Y(su) = L(s)} Ap. (2.2.10)

The optimal time from now on to stop the reward stream is tisétiine when the value
processY (-, u) drops down to the early exercise rewas(@d). If the two processes never
meet, then wait until the end to take a terminal rewgaed timep.

2.2.2 optimal control and stopping

Classical theory on optimal stopping has helped us ideat#topping rule that maxi-
mizes the expected rewaddr, u) over all stopping rules it (t, p).

If there is au* € % such that for the optimal stopping ruté,
Ji(7",u") > J(r*,u),a.s.on [QT] x Q, Yu € %, (2.2.11)
then since, from subsection 2.2.1,

J(",u) > J(r,u),Yue Z,t € Z(t,p), (2.2.12)
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the pair of strategies{, u*) satisfies
J(r,u") = J(r,u),Yue %, 7t € L(t,p). (2.2.13)
That (*, u*) satisfies inequality (2.2.13) is equivalent to its maxiimgz(2.2.1) and at-
taining supremain (2.2.2).
The rest of this subsection will look for suchu& satisfying inequality (2.2.11). To
simplify notations, in proofs of this subsectidr(;) is redefined as
L(t) = L(t)ﬂ[kp] + T]ﬂ[tzp], O<tx< p. (2214)

Let % denote the quotient space where control&indentical on f, T] are equivalent.
To be rigorous, for any, v e %,

u~vifandonlyifus=vs a.s. on§ w) € [t, T] X Q; (2.2.15)
U=~ . (2.2.16)

Lemma 2.2.2 (Karatzas and Zamfirescu (2008) [38])
Suppos® < 11 < 12 < T. 11 andr, are both{.%;}-stopping times. 4= vs on
s € [11,72], then for any boundegF,,-measurable random variabl@,

E'[0|.%,,] = B'[O|%,,]. (2.2.17)
Lemma 2.2.2 suggests,

supJi(-, u) = sup (-, u). (2.2.18)

ue% ue

To maximizeJ;(-, u) overu € %, it suffices to consider the values of controls aT].

Lemma 2.2.3For any t € [0, T], and anyr € .“(t,p), the set of random variables
{J(7, U)}ues, is a family directed upwards, i.evul, u? € %, there exists alie %,
such that

J(r, W0) = Ji(r, ut) v J(r, 1?). (2.2.19)
Hence there exists a sequence of contr8(s)ue %, such that
r!im T Ji(z, u"(7)) = supdi(r, u). (2.2.20)

Ue%
Proof. Define an%;-measurable set
A= {w € Qd(r,ut) > Ji(r, V). (2.2.21)

Let w0 = ullp + U?La € %. Then

EY[Ry(r, uU")|.Z#], on A

_ 1 2
B[R AF onae )Y HED

Iz W) = EX[Ry(z, W] = {

(2.2.22)
By the proposition on page 121 of Neveu (1975) [41], therstexa sequence of con-
trols in 24, approximating the supremum from below. By Lemma 2.2.2resojoim of
Ji(t, u) over%; is the same as supremum O¥&r O
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Theorem 2.2.1 A strategy(r*, u*) is optimal in the sense of (2.2.13), if and only if the
following three conditions hold.

(1) Y() = L(T*)H{T*@l + 1 lir=p)

(2) V(- A T*,u*) is aPY -martingale;

(3) Forevery ue %, V(- A 7, u) is alP!-supermartingale.

Proof. "if"

For anyr < 7 € ., and anyu € %, L(r) < Y(r,u) = Y(r). By (2.2.2), (2.2.3),
and (2.2.13),

t T T
Ri(r, u)+f h(s, X, ug)ds= L(r)+f h(s, X, ug)ds< Y(T)+f h(s, X, ug)ds= V(r, u).
° ° ° (2.2.23)
From condition(1), equality holds in (2.2.23) with the choice of 7*, giving

R(7",U) + fot h(s, X, ugds= V(z", u). (2.2.24)

Then,

t t
Y(t) + fo h(s X, u9ds= V(. u) = EY[V(r. W] = EYR(x U] + fo h(s. X, u9ds

(2.2.25)
In (2.2.25), the identity comes from (2.2.3) the definitidn\g first inequality from
supermartingale proper{), and second inequality from (2.2.23). From martingale
property(2), and identity (2.2.24), both inequalities become equditf u = u* and
7 = 7*. Hence for any € %, anyt € .”(t,p)

B[Rz A 75, u)%] < Y(D), (2.2.26)

where equality attained hy= u* andr = 7*.
"only if”

Condition(1) comes from Lemma 2.2.1* = 7*(p, u*) has the form of (2.2.10). For
anyu € %, Lemma 2.2.10 states th¥{r", u) = L(t")Lz-<p) + nllj=p. Condition (1)
is true, becaus¥(r*) = supY(r*, u).

uew

To see the supermartingale prope®, take 0< s <t < 7 < T, and an arbitrary
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ue %.
[ t
EY| Ji(r*,u) + f h(r, X, u;)dr fs]
L S
i T Ap t
=B E”[f h(r, X, up)dr + L(t7)| % | + f h(r, X, u;)dr ﬁs]
L t S
i T Ap
g f h(r, X, uy)dr + L(z) 9‘5} (2.2.27)
LYS
TAP
= sup E“[f h(r, X, u;)dr + L(7) ﬁs}
T€Ssp S
=Js(77, u).
Sinceu® is optimal,
Js(77, U) < Js(7%, ). (2.2.28)
By Lemma 2.2.3, there exists a sequence of conf{tdls € %, such that
I!im T (7", u") = (=", u"). (2.2.29)
For everyu", from (2.2.27) and (2.2.28),
t
E“[Jt(r*,u“)+f h(r, X, uy)dr|.Zs| < Jo(7*, U). (2.2.30)
S
Letn — o in (2.2.30). Bounded Convergence Theorem gives
t
B [Jt(r*, u’) + f h(r, X, up)dr| Zs| < Js(7", u”). (2.2.31)
S

Adding fos h(r, X, u;)dr to both sides of (2.2.31), and by definition\#fin (2.2.3),
BY[V(t, u)|F4] < V(s u). (2.2.32)

From supermartingale propert§), V(- A t*, u*) is aP' -supermartingale. In order that
it is aPY -martingale, it sffices to show

EY[V(r*,u")] = V(O,u). (2.2.33)
The strategy«*, u*) is optimal, so forany & t < 7*,

Y(t) = EY [ ft " h(s X, up)ds+ L(r*) %] . (2.2.34)
It follows that
Y(0) =E* »fmp h(s, X, u)ds+ L(r*)
) . 0‘ T AP t
=EY »]E“* [ft h(s, X, u)ds+ L(r*)| % +j; h(s X, u’;)ds} (2.2.35)
B v + fo (s X, u;)ds]

=BV [V(t, u")].
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The last equation in (2.2.35) comes from the definitioWaf (2.2.3). Remember that
t can be chosen arbitrary over, f0]. Equating the first and last terms in (2.2.35) gives
(2.2.33). This proveg). O

Definition 2.2.1 (Thrifty) A control u is called thrifty, if and only ifV(t A 7%, U)}o<t<,
is aPY-martingale, where* is defined in (2.2.10).

This definition is drawn from a dynamic programming definitiaf thrifty strategies
on page 48, Dubins and Savage (1965) [14].

Proposition 2.2.1 With the choice of optimal stopping ruté from (2.2.10), a strategy
u € 7% is optimal in the sense of (2.2.13), if and only if it is thyift

Proof. This is a proposition from Theorem 2.214.

Theorem 2.2.2Let 7" as defined in (2.2.10), and/(t, u)}«o, defined as in (2.2.3).
Then the following statements hold true

(1) {V(t, U)}tefo,~] admits the Doob-Meyer Decomposition
V(t,u) = Y(0) — A(t,u) + M(t,u),0 <t < 7°(u) A 77 (V). (2.2.36)

Y(0)=V(O,u), forallue 7.
(2) A(O,u) = 0. A(,u) is an increasing, integrable process, satisfying

t
A@@-A@w:—j]H@xz$%y4ﬁsxzw@ma05tsf. (2.2.37)
0

(3) M(-,u) is a right-continuous, uniformly integrabl2'-martingale. Further more,
M(-, u) is represented as a stochastic integral

t
M@wszﬂ%, (2.2.38)
0

where Z is a predictable, square-integrable process ifratd of u.

Proof. By Theorem 2.2.1{V(t, U) }ie[0.~-] iS @aPY-supermartingale. Boundedness of the
rewards guarantees that it is of clegslt then admits the Doob-Meyer Decomposition
(cf. page 24-25, Karatzas and Shreve (1988) [33])

V(t,u) = V(0,u) — A(t, u) + M(t, u), 0< t < 7". (2.2.39)

By definitions ofV andY, (2.2.2) and (2.2.3)¥/(0,u) = Y(0), for allu € %. The
PY-martingaleM(-, u) has the representation (Theorem 3.1, Fujisaki, Kallianand
Kunita, 1972)

t
M@@:LZ@Q, (2.2.40)
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whereZ" is a predictable, square-integrable process. It remaisisawZ" is irrelevant
of u. By definition ofB" in (2.1.7),

V(t,u) =Y(0) — A(t,u) + f t Z{dB
0

t t
=Y(0) - A(t, ) — f 291(s, X) f (s, X, ug)ds+ f 79dBs, 0< t < 7".
0 0

(2.2.41)
Take arbitraryu,v e 7. From (2.2.3) and replacingby vin (2.2.41),
t
Ve Ve + [ (s X ud - s X v)ds
0
t
V(0)— AL.Y) - f 200 1(s X)f(s X, va)ds (2.2.42)
0

t t
+ f (h(s, X, us) — h(s, X, vg))ds+ f Z!dBs.
0 0

Identifying martingale terms in (2.2.41) and in (2.2.42¢huse of uniqueness of mar-
tingale representation, we conclude

Z'=2"=.2Z. (2.2.43)
Identifying finite variation terms in (2.2.41) and in (2.2)4
At u) — AL, v)

t
. fo (h(S X, U9 + Zeo (s, X) (8. X, 1g)) — ((S X, va) + Zeo (s X)F(S X, ve)))dls

- f(H(S’ X.Zs, Ug) ~ H(S X, Z, v9))ds 0 < t < 7(U) A 7°(V).
0

(2.2.44)
]
Proposition 2.2.2 (Stochastic Maximum Principle)
If (=%, u") is optimal, then for all .e %, and for all0 <t < 7*(u*) A 7*(u),
H(t, X, Z, up) > H(t X, Z, wy). (2.2.45)

Proof. This is a direct consequence of Theorem 2.2.1 and 2.2.2. ptimality of
(r*,u) implies thatV(-, u*) is a martingale up to time*, henceA(-,u*) = 0. Also
Y(-,u") = Y(-,u), hencer*(u*) > 7*(u), for allu € . By (2.2.46),

A, U) = fo t(H(s X, Zg U2) — H(S X, Zs, Ug))ds 0 < t < " (U) A T°(U).  (2.2.46)

ThatA(-, u) being increasing forcad (-, X, Z, u*) — H(:, X, Z, u.) to be nonnegativex
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Theorem 2.2.3 Let7* be the optimal stopping rule defined as in (2.2.10). If a aalntr
Ui = 1 (t, w) in Z maximizes the Hamiltonian in the waylsfacs' condition

H(t, w, z 1 (t, w)) = H(t, w, Z u(t, w)), (2.2.47)

forall0<t<p, weQ, zeRY and y = u(t, w) in %, then u is optimal in the sense
that

J(r*,u") > J(7*,u), forall 0 < t < 7%, and ue %. (2.2.48)

Proof. This proof follows the treatment in (section 4, Davis (19[19)).
Fort < s< ¥, define, for arbitraryi € %,

Is(u) := BY [L(T*) + fﬁ h(r, X, ur)dr
t

95]_f5(h(r, X, u) = h(r, X, ur))dr. (2.2.49)
t

By (2.2.1), (2.2.10), and (2.2.11)(u) = J(r*, u), andE"[l-(U)|.F4] = J(7*,u). But
[.(u) can be represented as

Is(u) = 1t (u) - j:s(h(r, X, u7) = h(r, X, up))dr + j:SZde},‘*, (2.2.50)

for some predictable?' -square-integrable procegs. Remember the definitions of
the Brownian motiorB" in (2.1.7) and the HamiltoniaH in (2.2.6), then

Is(u)=It(u)—[S(H(r,x,z;“,uﬁ)—H(r,X,Zﬁ‘,u,))dr+j:SZ,*dBE. (2.2.51)

Isaacs’ condition (2.2.47) suggest@l) being aPY-local supermartingale. Via standard
localization arguments,

(@) = 1(U) = BY[1- (W)L = J(z*, u). (2.2.52)

2.3 The two-player games

In this section, we shall study the two-player game Probl2rh.2) as a simplest illus-
tration of theN-Player game Problem (2.1.3). Then, to move forward taNk@ayer
game, it is only a matter of fancier notations.

The two players in Problem Problem (2.1.2), respectivelgximize their expected
reward processes

I (T p.u,v) =E[RH(r p, u, V)|.Z];

2.3.1
J2(7, p, u,V) :=E[R¥(t, p, u, V)|.7]. ( )
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Definition 2.3.1 (Equilibrium strategies)

Lett* andp* be stopping rules in”(t, T), and(u*, v*) controls in%Z x ¥'. The strategy
(%, p*, u*, v¥) is called an equilibrium point of Problem (2.1.2), if for allopping rules
Tandp in .7(t, T), and all controls(u, V) in ZZ x ¥,

R, ptut, V) = I pt L u v,

2.3.2
R p V) = B o U Y). (2.3.2)

Given the strategyp(, v*) of Player II, Player I's strategyr{, u*) maximizes his ex-
pected reward over all stopping rules . (t, T) and all controlsu € . Given the
strategy t*, u*) of Player |, Player II's strategy(, v*) maximizes his expected reward
over all stopping rulep € .(t, T) and all controlss € 7. Each Player faces the con-
trol problem with discretionary stopping, the one solvedeégtion 2.2.

The following notation will facilitate expositions in thgection.
Notation 2.3.1 (1)

Yi(tu) := Vit u;p,v) i= sup J(rp,uV) > It p,u,v);
e (LT)

) ) (2.3.3)
Yo(t,V) i= Yao(t,v; r,u) :=  sup Ji(r.p,u,Vv) > I (7, t,u,V).
peSL(T)
(2)
Yi(t;p,V) i= sup supJi(z.p,u,V);
e (t,T) ue , (2.3.4)
Yo(t; 7, u) = sup supJi(r,p,U,V).
peL(LT) vey
3)

t
qmw:QmM@w:n@wﬁﬁm@x%%Ms

t
= sup Jtl(r,p,u,v)+f hi(s X, Us, vs)ds=  sup E[RY(z,p, U, V)|.Z];
re.7(t,T) 0 e (1,T)

Qa(t, V) := Qa(t,v; 7, u) :=Yo(t, V) + j: hao(s, X, us, vs)ds

t
= sup Jf(T,p,u,V)+fhz(s,X,us,vs)dS= sup E[R(r, p, u, V)| 7]
peZ(t,T) 0 peZ(LT)

(2.3.5)
(4)

t
wmauw:nwAW+quax%%ws
0 (2.3.6)

t
Vo (t; 7, u,v) :=Yo(t; 7, u)+f hao(s, X, U, Vg)ds
0
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(5) The Hamiltonians are defined as

Hi(t, w, 21, U, Vi) = Hi(t, w, z1, u(t, ), v(t, w))

=70 1t w) F(t, w, u(t, w), v(t, ) + hi(t, w, ut, w), v(t, w));
Ha(t, w, 22, Ui, Vi) = Ha(t, w, 2, u(t, w), v(t, w))

=20 H(t, w) F (t, w, u(t, w), v(t, ) + ha(t, w, u(t, w), v(t, w)),

(2.3.7)

for0<t<T,weQ 7 andzinRY and all admissible controls;u= u(t, w) and
Vi = u(t, w).

2.3.1 game of stopping

Let us first fix a generic pair of controlsandv for the two Players respectively. Player

| chooses stopping rutee . (t, T), and Player Il chooses stopping ryles . (t, T).
Given a stopping rulg® of Player Il, Player | seeks to maximize his expected reward
Ji (L, p°, u, v) with 1. Given a stopping rule® of Player |, Player |l seeks to maximize
his expected reward?(z°, pt, u, v) with p*.

Definition 2.3.2 (Equilibrium stopping rules)

Lett*,p" € Z(t,T),ue %, and ve ¥. The pair of stopping ruleé*, p*) is called
an equilibrium stopping rule for the game of stopping wittvaeds (2.1.10), if for all
1,0 € L(t,T),

N G TRY) N TRV
tZ( P ) t2( P ) (2.3.8)
G p"u,v) > JE(T7, p, U, V).

Lemma 2.3.1 That (7%, p*) is a a pair of equilibrium stopping rules is equivalent to
both of the following two conditions altogether.

1)
Y]_(T*, U;p*,V) = Ll(T*)]].{T*<p*| + Ul(p*)]]-lp*sr*<T| + fl]]-{r*/\p*:Tl, (239)

and
Yz(p*,V; T*, U) = Lg(p*)]].‘p*<7*} + UZ(T*)]]-IT*sp*<T| + fz]l{r*/\p*:n; (2310)

(2) The stopped supermartingales(Qn 7, u; p*,v) and Q(- A p*,v; 7, u) are P“V-
martingales.

Besides, suppose in addition I U;, and L, < Uy, a.s., then if their exists a pair
of stopping rulegr*, p*) satisfying the equations

T =inf{it < s<plYa(su;p",V) = Li(9)} A p”;

2.3.11
p' =inflt < s < pIYa(s Vi 7, U) = La(9) A 7 (2:3.11)

on first hitting times, thefr*, p*) are equilibrium.
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Proof. Definition 2.3.2 is equivalent to saying, that when Playardés stopping rule
p*, Player I’ stopping rule = * attains supremum in

Yit,u;p%,v) = sup Ji(r,p%,u,V), (2.3.12)
e (t,T)

and when Player | uses stopping rufe Player II's stopping rule = p* attains supre-
mum in

Yo(t,v;75,u) = sup J¥(",p, U, V). (2.3.13)
peZ(L,T)
Each Player solves the optimal stopping problem in sulbme2t2.1. Applying Lemma
2.2.1to the two Players respectively proves Lemma 2.3.1. m]

Remark. The pair of equilibrium stopping rules( p*) defined in Definition 2.3.2
always exists. The equations (2.3.9) and (2.3.10) always &alutions. Let € [0, T]
be the current time, thert = p* = tis a trivial equilibrium that satisfies inequalities
(2.3.8), and that solves the system (2.3.9) and (2.3.10)0#s not hurt if no one plays
the game.” Non-trivial equilibrium stopping rules are usuthe ones of interest.

Theorem 2.3.1 (non-existence of an optimal stopping rule)
Suppose L. < U; +¢ and L, < U, + ¢, a.s. for some real number > 0. Under
Assumption A 2.1, equilibrium stopping rules do not exist.

Proof. If (7%, p*) were equilibrium, thern* would attain supremum in (2.3.12), and
would attain supremum in (2.3.13). There would have ta'be p*, a.s., angh* < 7,
a.s., which is impossible. m|

2.3.2 game of control and stopping

For each of the two Players, when the other Player’s stragegiso equilibrium, his
equilibrium strategies solves the control problem withcti$sionary stopping in sub-
section 2.2.2. Claims in this subsection can be verified Ipjyapg Theorems 2.2.1,
2.2.2,and 2.2.3, and Propositions 2.2.1 and 2.2.2, to €fable dwo Players.

Theorem 2.3.2 The set of stopping rules and contréts, p*, u*, v¥) is an equilibrium
point of Problem 2.1.2, if and only if the following three ditions hold.
1)

Y175 0%, V) = Li(T) ey + Ur(0 ) Lipr<re<ty + 1L npe=T)s (2.3.14)

and
YZ(P*, T*, U*) = LZ(p*)]l{p*Cr*] + UZ(T*)]I{T*S;J*<T) + 6211[7*/\;)*=T); (2315)

(2) The two processes VAT ; p*, u*, v*) and \b(-Ap™; T*, U*, v¥) are PV -martingales;
(3) For every ue %, Vi(- A T; p*, u, v*) is aP“¥ -supermartingale. For everyg 7/,
V(- A p*; T, U%, V) is aPYV-supermartingale.

Definition 2.3.3 (Thrifty) Supposér®, p*) are a pair of stopping rules satisfying (2.3.11).
A pair of controls(u, V) is called thrifty, if and only if (- A 7; 0%, u,Vv) and \6(- A
o7, u,v) are P“V-martingales.
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Proposition 2.3.1 With the choice of equilibrium stopping rulés, p*) satisfying (2.3.9)
and (2.3.10), a pair of controlg, v) € % x ¥ is equilibrium in the sense of Definition
3.1.71, if and only if it is thrifty.

Theorem 2.3.3 Supposér™, p*, u*, v*) is a set of equilibrium strategie$Vi(t; o, U, V) }efo.++]
and{V(t; 7, U, V) }ie[o,,-] admit the Doob-Meyer Decompositions

V1i(t; o, u,v) =Y1(0; 0, V) — As(t; o, U, V) + My(t; p,u,v),0 < t < 77

2.3.16
Vo(t; 7, u,v) =Y2(0;7,Vv) — Ao(t; 7, u,v) + Ma(t; 7, u,v),0 < t < p*. ( )

Y1(0;p, V) = V1(0;p, u,V), Y2(0; 7, u) = Vo(0; 7, u,v),forallu e % ,ve 7. Ai(0;p, u,v) =
Ax(0;7,u,v) = 0. A p,u,Vv)) and A(-; 7, u,v) are increasing, integrable processes,
satisfying

t
Ag(t; 7, uh V) — Ag(t 7, U V) = — f (Ha(s X, Z1(9), UE, Vs) — Hi(s X, Z1(9), U2, vs))ds,
0

o<ty

t
Az(t,p, u, Vl) - Az(t,p, u, V2) = j(; (HZ(S, X, ZZ(S)’ Us, Vé) - H(S, Xa ZZ(S)’ Us, Vg))ds,

O<t<p"
(2.3.17)

The processes M; p, u, v) and M(:; 7, U, V) are right-continuous, uniformly integrable
PYY'-martingale andP"V-martingale, respectively. Further more, 1 p, u,v) and
Ma(-; 7, u, V) are represented as stochastic integrals

t
Matip.u) = [ Zi(odes
0 (2.3.18)

t
Ma(t; 7, u,v)=f Z3(9)dByY,
0

where Z and Z are predictable, square-integrable processejsisthe same process
for all u, and Z is the same process for all v.

Proposition 2.3.2 (Stochastic Maximum Principle)
If (z*, p*, u*, v¥) is an equilibrium point of Problem 2.1.2, then

Hi(t, X, Za(t), uf, Vi) >=Ha(t, X, Z1(t), u, i), forallue 7,0 <t < 77

2.3.19
Ha(t, X, Zo(t), U5, V) >Halt, X, Za(t), uf, w), forallv e #,0 < t < p~. ( )

Theorem 2.3.4 (syficiency of Isaacs’ condition)
Letr" andp® in .7 (t, T) be stopping rules satisfying (2.3.8). If the contrgls=uu*(t, w)
in 7z and V = v*(t, w) in ¥ satisfylsaacs condition

Hi(t, w, z1, 1" (t, w), v*(t, w)) = Hi(t, w, z1, u(t, ), v*(t, w));

2.3.20
Halt, . 2ot (1 0). ' (t ) > Ha(t 0, 22,4 (1 ). 0(t, ). (.3.20)
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forall0<t<T,winQ,z and 2 inRY, u = u(t, w) in % and v = u(t, w) in ¥, then
u*, v* are optimal in the sense that

It pr V) > I o u v, forallu e 7,0 < t < (U, V') A 7 (U, V);

(7%, p" U, V) = J3(r, pt Ut ), forallve 7,0 < t < p* (U5, V') A p*(U”, V).
(2.3.21)

If a pair of stopping rules satisfies the two equivalent cbods in Lemma 2.3.1, for
all controlsu € %7 andv € ¥, and if the controlar* andv* satisfy Isaacs’ condition
(2.4.17), then combing (2.3.8) and (2.3.21) suggests kmastrategy*, p*, u*, v*) is
an equilibrium point as in Definition 2.3.1.

2.4 TheN-player games

When all the otheN — 1 players’ strategies are given, a player faces the optiiza
problem that we have solved in section 2.2. This section extend the two-player
game Problem 2.1.2 studied in section 2.3 toXkplayer version Problem 2.1.3.

Definition 2.4.1 (Equilibrium strategies)

Letr® = (r3,---,7y) be a vector of stopping rules i¥’(t, T), and control vector
u = (uj,---,uUy) in . The strategy(z*, u”) is called an equilibrium point of the
N-Player stochastic gierential game of control and stopping,

JtI(I*,H*) > ‘]tl((Tz, Y Ti*,l, T, Ti*Jrlv T, TT\])? (ul’*v Y uiil’*a uia ui+l’*7 Y uN’*))v
(2.4.1)
for all stopping rulesr; in .(t, T) and all controls win %, for each player i, i=
1,---,N.

The characterization of the equilibrium point will use tlodldwing notations defined
foralli=1,---,N.

Notation 2.4.1 (1)

Yit,w) = Vit y;0) == sup J(z.u); (2.4.2)
e (tT)
(2) .
Yi(tz,u) := sup supJ(z,u); (2.4.3)
T e (LT) Ue?
®3)

Qi(t,u) :=Qi(t,u; 1) = Yi(t,u) + fot hi(s, X,ugds
(2.4.4)

= sup @)+ f h(sX.u)ds= sup EYR)(r.wLZ;
fes(T) 0 nesET)
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4)
t
Vit T, W) = Yit T, u) + f hi(s, X, u)ds (2.4.5)
0
(5) The Hamiltonians are defined as

Hi(t, 0,2, 4) = Hi(t , 7, u(t, w)) = zo Mt w)f(t, w, u(t, w)) + hi(t, w, u(t, w)),
(2.4.6)

for0O<t<T,weQ,zinRY and all admissible controls, &= u(t, w).

2.4.1 game of stopping

We first fix an arbitrary control vectar= (u, - - - , uy) for theN-Players. The purpose
of this subsection is to find a set of equilibrium stoppingsat' = (73,--- , 7y) in the
sense that

J@ W) = (@ T T g5 TR), ), forall 7 e 2 (¢, T), (2.4.7)

foralli =1,---,N. This is anN-player game of stopping Equivalent conditions for
the existence of equilibrium stopping rules with be prodider a generic vectou of
controls.

Definition 2.4.2 (Equilibrium stopping rules)
For a generic control vector &= (uy, - - -, uy) for the N-Players. The set of stopping
rulest* = (73, -+, 7)) is said to be equilibrium for the N-player game of stoppiffig, i

J@ W = I T T Ty > TR, W), for all 7 in (8, T), (2.4.8)
foralli=1,---,N.

Lemma 2.4.1 Thatr* is a vector of equilibrium stopping rules is equivalent tdtbof
the following conditions altogether, foral= 1,--- , N,

1)
Yi(r} T, u) =R. (7", u)
o ) (2.4.9)
=Li(T) L <ry) + Uir() iy < <1y + &illger, =713
(2) The stopped supermartingale(Q\ 7}, u; 7*) is aP4-martingale.
Besides, suppose in addition k Uj, a.s., foralli= 1,---,N, then if their exists
a pair of stopping rulegr*, p*) satisfying the equations
71 =inf{t < s<plYi(r; 75, U7) = La(9} A Ty,
75 = INf{t < s< p|Yo(15; 75, U") = La(9)} A TZZ);
(2.4.10)

Ty = inf{t < s< plYn(ry; 77, U7) = Ln(9)) A TZN),

on first hitting times, them* is an equilibrium stopping rule.



2.4. THEN-PLAYER GAMES 43

Proof. By Lemma 2.2.1. m]

Theorem 2.4.1 (non-existence of an optimal stopping rule)
Suppose L< Uj + ¢ a.s., foralli= 1,---,N, for some real number > 0. Under
Assumption A 2.1, equilibrium stopping rules do not exist.

Proof. If * were equilibrium, there would have to be< 7, a.s., forali = 1,--- , N,
which is impossible. m]

2.4.2 game of control and stopping

Supposex*, u*) is an equilibrium point of thé&l-player game of controls and stopping.
Givenall the oth'eN'—l Players’ stopping rulesT, - T T ,_T*,‘\,)_ and contr_ols
(ubs, - umh o Ut L uN), the strategy, U') = (77, ™) maximizes Playei's
expected reward

J(T T T Thgs o)y (UM - Ul d L uN)), (2.4.10)
Playeri faces a maximization problem solved in section 2.2. As cguseces of The-
orems 2.2.1, 2.2.2, and 2.2.3, and Propositions 2.2.1 @12 2we have the following

results for theN-player game.

Theorem 2.4.2 The strategy(r*, u*) is an equilibrium point of the N-player game
of controls and stopping, if and only if the following threenditions hold for all
i=1---,N.

(1)

Vil ru) =R, (L u) (2.4.12)
=Lt L <riy) + UiT) i <oy + &y, =T B

(2) Vi(- A1 77, u) is aPY -martingale;
(3) For every lie %, the process N- A 77 7%, (ub, -+ U=t Ul U+ ... uN"))is a
Pt iU YY) _gypermartingale.

Definition 2.4.3 (Thrifty) Suppose™* are equilibrium stopping rules. A vectoraf
controls is called thrifty, if and only if N- A 777, u) is a P4-martingale for all i =
1,---,N.

Proposition 2.4.1 With the choice of equilibrium stopping rules, a vector ue %
controls is equilibrium in the sense of Definition 2.4.1 nfleonly if it is thrifty.

Theorem 2.4.3 Supposdr*, u*) are equilibrium strategies, then the following state-
ments are true forall = 1,--- , N.
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(1) Vi(- A 75zt (U, - u bl u* e uN)) admits the Doob-Meyer Decom-
position

Vi (t A T|*1 I*’ (ul,*’ - ui—l,*, Ui, ui+1,*’ - uN,*))
=Yi(0; 7, (U, - u Tl uV)) — A U + MG UY), 0 <t < 1
(2.4.13)

(2) Forallu' € %, A(0;u') = 0. A(-; u) is an increasing, integrable process, satisfying
At u) = At V)
__ ft(Hi(S X Zi(9). (U, U U ) (2.4.14)
- H?(s X, Z(9), (U, - U vt UM ))ds, 0 <t < 7

(3) For all u; € %, Mi(0;u) = 0. M;(-; u') is a right-continuous, uniformly integrable
P U ) martingale. M(-; uj) is represented as the stochastic integral

1 3 i—L i fi+lx | * i—Lk i i+l %
Mi(t: i) = f ZU A ) (B ) (2.4.15)
0

where Z0 e AU s 4 predictable, square-integrable process identical for
allu' e %.
Proposition 2.4.2 (Stochastic Maximum Principle)
If (z*, u") is an equilibrium point of the N-player game of controls atapping, then,
foralli=1,---,N,

Hl(t, x’ ZI (t), 9:) > Hl(t, x’ ZI (t), (usz’ ) uiil’ Ui, ui*Jrl, T, u}k\l)t), (2416)

forallu' e %,0<t < 7.

Theorem 2.4.4 (Syficiency of Isaacs’ condition)
Letz be a vector of equilibrium stopping rules. If a control veai® = u(t, w) in Z
satisfyl saacs condition h

Hi(t, .2, 47 (t w)) 2 Hi(t w, 2, (- 0™, UV (), (2.4.17)

foral0<t<T,weQ zeR U =p(tw)in?,forali=1---,N, thendis
equilibrium in the sense that

Q@ u) = A e u e d e aV) forallu' € %, (2.4.18)

foralli =1,---,N. Combining (2.4.7) and (2.4.18), the set of strateiésu*) is an
equilibrium point by Definition 2.4.1.



Chapter 3

BSDE Approach

This chapter considers non-zero-sum games with featurestbf stochastic control
and optimal stopping, for a process oftdsion type, via the backward SDE approach.
Running rewards, terminal rewards and early exercise dsvare all included. The
running rewards can be functionals of th&asion state process. Since the Nash equi-
librium of anN-player non-zero-sum game is technically not mofédilt than a two-
player non-zero-sum game, only notationally more teditius,number of players is
assumed to be two, for concreteness.

Section 3.1 solves two games of control and stopping. Theéralsrenter the drift
of the underlying state process.

In the first game of section 3.1, each player controls andsstpd his stopping time
terminates his own reward stream only. The value proceddastlo players are part
of the solution to a multi-dimension BSDE with reflecting thar. The instantaneous
volatilities of the two players’ value processes are exghfiexpressed in the solution.
Existence of the solution to general forms of the multi-disienal BSDE with re-

flecting barrier will be proven in section 3.2 and section 3Ben, in the Markovian

framework, the instantaneous volatilities can enter therods as arguments, in which
case the game is said to observe volatilities in additiorhéodther two arguments,
namely time and the state-process.

In the second game of section 3.1, there are interaction®oppmg. The time for
each player to quit the game is the earliest of his own st@pfiine and the stopping
time of the other player. Using the original definition of didpuiium introduced by
Nash in 1949, the second game will be reduced to first solvamyeg of the first type,
then proving convergence of an iterated sequence of stggpires. The argument
for convergence is monotonicity, hinted at Karatzas andd8titl (2006) [35]: earlier
stopping implies smaller value processes, and smalleeyalocesses imply even ear-
lier stopping. This technicality, reluctantly, assumes pair of the terminal rewards is
increasing. Due to the restriction of the comparison thedmedimension one, conver-
gence of the iteration will be proven for closed loop corgrahd Markovian controls

45
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only, without observing the volatilities.

Section 3.2 proves existence and uniqueness of the soltttianmulti-dimensional

BSDE with reflecting barrier, a general form of the one thabacpanies Game 3.1.1.
Section 3.3 discusses extension of the existence of spfutio equations of ultra-
Lipschitz growth.

In our Game 3.1.1 where each player terminates his own rewaedmay argue the op-
timality of stopping times via the semimartingale deconitimsof the value processes.
The BSDE approach here proposes a multi-dimensional BSDis@talue processes
in the solution provide the value processes of the non-gam-games. News both
good and bad is that general existence result of solutionsuit-dimensional BSDE
with reflecting barrier still remains a widely open questidks is proven in Hu and
Peng (2006) [31], in several dimensions, the comparisooréim is very restricted, so
the penalization method which solves the one-dimensiomahierpart problem does
not help. Without Lipschitz growth condition, convergemecguments of the usual Pi-
card type iteration cannot proceed, either. In a Markoviamework, this paper proves
the Markovian structure of solutions to multidimensioreflected BSDEs with Lips-
chitz growth, and uses this Markovian structure as a stagoint to extend existence
result to equations with growth rates linear in the value aoldtility processes, and
polynomial in state process.

3.1 Two games of control and stopping

In the non-zero sum games of control and stopping to be disclis this chapter, each
player receives a reward. Based on their up-to-date infoomahe two players | and
I, respectively, first choose their contralandyv, then the times andp to stop their
own reward streams. The controlandv are two processes that enter the dynamics of
the underlying state process for the rewards. The optiynaliterion for our non-zero-
sum games is that of a Nash equilibrium, in which each playexpected reward is
maximized when the other player maximizes his. In takingdittonal expectations of
the rewards, the change-of-measure setup to be formulatidne single Brownian
filtration and one single state process for all conteoésxdv. Hence when optimizing
the expected rewards over the control sets, there is no ndée@p in mind the filtration
or the state process.

Let us set up the rigorous model. We start witld-dimensional Brownian motion
B(-) with respect to its generated filtrati¢f# }o<t<t ON the canonical probability space
(Q,.Z,P), in whichQ = CY[0, T]is the set of all continuous-dimensional function on
a finite deterministic time horizon [0], . = £ (Cd[O, T]) is the Borel sigma algebra,
andP is the Wiener measure.

For everyt € [0, T], define a mappingy : C[0,T] — [0, T] by ¢:(y)(s) = Y(SA 1),
which truncates the functione C[0, T]. For anyy® € C[0, T], the pre-image; *(y°)
collects all functions irC[0, T] which are identical tg® up to timet. A stopping rule
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is a mapping : C[0, T] — [0, T], such that
{y € C[0,T]: 7(y) < t} € ¢ * (£ (C[0, T])). (3.1.1)
The set of all stopping rules ranging betwegeandt, is denoted by (1, t2).

In the path-dependentcase, the state proceX$-) solves the stochastic functional
equation

X(t) = X(0) + fot (s, X)dBs, 0<t < T, (3.1.2)

where the volatility matrixr : [0, T] x Q — RYx RY, (t, w) — o(t, w), is a predictable
process. In particular in thidlarkovian case, the volatility matrix- : [0, T] x RY —

RY x RY, (t, w(t)) — o(t, w(t)), is a deterministic mapping, then the state process equa-
tion (3.1.2) becomes the stochastiffeliential equation

X(t) = X(0) + f t (s, X()dBs, 0< t < T. (3.1.3)
0

The Markovian case is indeed a special case of path-depead8imce it will receive
some extra attention later at the end of subsection 3.1.2Jegeribe the Markovian
framework separately from the more general path-depermdset

Assumption 3.1.1 (1) The volatility matrixo(t, w) is nhonsingular for everyt, w) €
[0, T] x ©;
(2) there exists a positive constant A such that

|oij (t, w) - Oij (t, w)| < A suplw(s) — w(s)l, (3.1.4)

O<s<t
forall1<i,j<d,forallte[0,T],w, we Q.

Under Assumption 3.1.1 (2), for every initial valXg0) € RY, there exists a pathwise
unigue strong solution to equation (3.1.2) (Theorem 14lI&tE(1982) [21]).

The controlsu andv take values in some given separable metric spageand A,
respectively. We shall assume thiat andA, are countable unions of nonempty, com-
pact subsets, and are endowed withdhelgebrase; and.« of their respective Borel
subsets. The controlsandv are said

(i) to be open loop if Uy = u(t,w) andv; = v(t, w) are{Fi}o<t<T-adapted processes
on [0, T], whereu : [0,T] xQ — Aj; andv : [0,T] x Q — A, are non-anticipative
measurable mappings;

(ii) to be closed loop if u; = u(t, X) andv; = v(t, X) are non-anticipative functionals of
the state proces§(-), forO<t < T,whereu : [0, T]xQ — Ajandv : [0, T]xQ — Ay
are deterministic measurable mappings;

(iii) to be Markovian, if u = u(t, X(t)) andv; = u(t, X(t)), for 0 < t < T, where
1[0, TIxRY - Aj andv : [0, T] xRY — A, are deterministic measurable functions.

In the path-dependent case, the %etx ¥ of admissible controls are taken as all
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the closed loop controls. The techniques that we shall uselie for the optimal
closed loop controls also apply to the open loop controlhs@xtension of the results
from closed loop to open loop is only a matter of more compéidanotations. The
discussion will be restricted within the class of closedpl@ontrols for clarity of the
exposition. In the Markovian case, the sitx ¥ of admissible controls are taken as
all the Markovian controls. Markovian controls are a suledefosed loop controls.

We consider the predictable mapping

f:[O,T]XQXAleZ—MRd,

(3.1.5)
(t, w, u(t, W), v(t, w)) — f(t, w, u(t, w), v(t, w)),
in the path-dependent case, and the deterministic medsumaipping
f:[0, T]xQxA; XAy, > RY, (3.1.6)
(t, . u(t, w(©)), v(t, (1)) = Tt w(t), u(t, (D), v(t, (1)), .
in the Markovian case, satisfying:
Assumption 3.1.1 (continued)
(3) There exists a positive constant A such that
ot w) f (L w, pu(t, w), u(t, w))| < A, (3.1.7)

forall 0 <t < T, w e Q, and all theA; x Ajp-valued representative elements
(u(t, w), v(t, w)) of the control space® x 7.

For generic controls; = u(t, w) andv; = u(t, w), defineP*", a probability measure
equivalent td?, via the Radon-Nikodym derivative

dpwv t 1
|7 = exp{ f {8 X)f(s X, s, ve)dBs — 5 f lo™ (s, X) (s, X, U, vs)IZdS}.
0 0
(3.1.8)
Then, by the Girsanov Theorem,
t
B 1= B - f o H s X)f(s X, usve)ds 0<t<T (3.1.9)
0

is a P“V-Brownian Motion on [QT] with respect to the filtratio.%}o<t<t. In the
Markovian case, equation (3.1.9) can be written as

t
B = B, - fo o (s X(9)F(S X(9), u(s X(9), v(s X(9))ds 0< t < T.  (3.1.10)

In the probability spacett, .#, P) and with respect to the filtratiof# Jo<i<, the pair
(X, B*Y) is a weak solution to the forward stochastic functionalagun

t t
X(t) = X(0) + f f(s, X, Us, Vs)dS+ f o(s X)dBY, 0<t < T, (3.1.11)
0 0
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in the path-dependent case, and a weak solution to the fdrstachastic dferential
equation

t t
XO=XO)+ [ (s X(Suu(s XS vls X(Mds+ [ ala X()dE,0<t<T,

(3.1.12)
in the Markovian case.

When playing the game, the two players choose first their sslbie controlau in

% andvin ¥, then for any givern € [0, T], they choser; andp; from .“(t, T), times

for them to quit the game. The pair of control and stopping (ul7) is up to player |
and the pair\, p) is up to player Il. For starting the game at timjepplying controls

u andv, and quitting the game at andp; respectively, the players receive rewards
RY(7t, pr, U, v) andR¥(ry, o, U, V). To average over uncertainty, their respective reward
processes are measured by the conditiBfélexpectations

Euyv[Rtl(Tt, Pt, u, V)l‘%] andEuyv“%(Tt?pt? u, V)|f%] . (3113)

In the non-zero-sum games, the two players seek first adst@ssbntrol strategieg*
in % andv* in ¥, and then stopping ruleg andp; from .(t, T), to maximize their
expected rewards, in the sense that
BV IR, o1 0T VIF] = B[Rl pf, U V)P, Ve e S (L T), Yu e %
BV [RE(r, i, U V)IA] 2 BYYIRIE, oo, U VLA, Ypr € (6 T), YV e 7.
(3.1.14)

The interpretation is as follows: when player Il employs®gy p;, V), the strat-
egy (r;, u’) maximizes the expected reward of player | over all possshiategies on
S, T) x %; and vice versa, when player | employs strategy \*), the strategy
(oi, V) is optimal for player Il over all possible strategies of(t, T) x #. The set
of controls and stopping rules*( po*, u*, v*) is called the equilibrium point, oash

equilibrium , of the game. For notational simplicity, denote

Vi(t) := BYV[R(ef, pf, U", V)AL (3.1.15)
the value process of the game for each playet, 2.

In subsections 3.1.1-3.1.2 and subsection 3.1.3, we shadlider two games, which
differ in the forms of the reward?! andR?.

Game 3.1.1
Tt
R (71, o1, U, V) = RH (1, U, V) = f hi(s, X, Us, Vs)dS+ L1 (1) Liryety) + E1L {77y
t

Ot
%(Ttv Pts u, V) = R{Z(pU u, V) = f h2(57 X’ uS? VS)dS+ LZ(pt)ﬂ[p1<T) + on{pFT)-
t
(3.1.16)
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Game 3.1.2
RE.(TI, Pt u, V)

TtAPt
= f hl(S, xv Us, VS)dS+ Ll(Tt)ﬂ[T1<Px) + Ul(pt)]l(PxST1<T] + fl]l{‘r‘/\pFT);
t
I%(Tt, Pts u, V)

TtAPt
:=f hZ(S’ xv Us, VS)dS+ LZ(pt)]l{px<T1] + Uz(Tt)n{TxSP1<T] + on{n/\pFT)-
t

(3.1.17)

Rewards from both games are summations of cumulative revedmted = (hy, hy)’,
early exercise rewards = (L, L2) andU = (Uy,Uy)’, and terminal rewardé =
(£1,&)’. Here and throughout this chapter the notatMhmeans transpose of some
matrix M. The cumulative reward ratdg andh, : [0,T] X Q X A3 X A, — R,
(t, X, u(t, w), v(t, w)) — hi(t, X, u(t, w), v(t, w)), 1 = 1,2, are predictable processed,n
non-anticipative functionals iX(-), and measurable functions jirft, w) and u(t, w).
The early exercise rewards : [0,T] x Q — R?, (t,w) — L(t,w) =: L(t), and
U:[0,T]xQ = R? (tw) — U(t,w) = U(t) are both{.%}o<<7-adapted pro-
cesses. The terminal rewasd= (£1,&2)" is a pair of real-valued’t-measurable
random variables. In the Markovian case, the rewards tadedaim h(t, X, u, vi) =
h(t, X(t), u(t. X(1)), v(t, X(1)), L(t) = L(t X(1)), U (1) = U(t, X(1)), ands = £(X(T)), for
all 0 < t < T and some deterministic functiohs [0, TIxRY —» R, U : [0, T] xRY —
R, andé : RY — R2,

Assumption 3.1.2 (1) The early exercise reward processes L and U are contisuou
progressively measurable. In Game 3.1.1, assu(iig k £ holds a.e. o2. In Game
3.1.2, assume (L w) < U(t,w) < &(w), a.e. (t,w) € [0,T] x Q, and also assume,
fori = 1,2, that the reward processes;(J, whose terminal values are defined as
Ui(T) = &, are increasing processes.

(2) There exist some constantgd and Gyg > 0, such that

I(t, , u(t, @), v(t, W) I+IL(L W) +U (L w)l+(w)] < Crwa (1 + sup Iw(S)Izp), (3.1.18)

a.e.forallw e Q,0<t< T, and all admissible controls & u(t, w) and v = v(t, w).

From the rewards and the dieients of the state process, we define the Hamiltonians
associated with our games as

Ha(t, w, z1, Ui, V) = Ha(t, w, 71, u(t, ), v(t, w))

=70 Lt w) (L, w, u(t, w), v(t, w)) + ha(t, w, u(t, w), v(t, w));
Ha(t, w, 22, Ui, V) = Ha(t, w, 22, u(t, ), v(t, w))

=20 H(t, w) T (t, w, u(t, w), v(t, ) + ha(t, w, u(t, w), v(t, w)),

(3.1.19)

for0<t<T,weQ zandz in RY, and all admissible controlg = u(t, w) and
Vi = u(t, w). From Assumption 3.1.1 (3), the Hamiltonians are Lipschinctions in
z andz, uniformly overall 0<t < T, w € Q, and all admissible controlg = u(t, w)
andv; = v(t, w).
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Assumption 3.1.3 (Isaacs’ condition) There exist admissible contrgls=uy*(t, ) in
% and \ = v¥(t,w) in ¥, such that

Hi(t, w, z1, 1" (t, w), v*(t, w)) = Hi(t, w, z1, u(t, ), v*(t, w)); (3.1.20)

HZ(t, w, 2, ,Lt* (t, 0-)), v (t, 0.))) 2 HZ(t’ w, 22, ,Lt* (t’ 0.)), U(t’ w))’ o
forall 0<t<T,weQ, (z,2) € R*Y, and all admissible controls; = u(t, w) and
Vi = u(t, w).

The Isaacs’ conditions on the Hamiltonians are "local” oyatlity conditions, formu-
lated in terms of every point,(z;, z,) in Euclidean space and every paitin the func-
tion spaceQ. Theorems 3.1.1 and 3.1.2 take the local conditions on thmillttani-
ans and transform them into "global” optimization statetsenvolving each higher-
dimensional objects, such as stopping times, stochagitepses, etc., cumulated in
the Euclidean space and averaged over the probability sgdides implication is en-
dowed by the continuous-time setting, contrasted to someatie-time optimization
problems where local maximization need not lead to globalimization.

When linking value processes of the games to the solutioBSIDES, we shall dis-
cuss the solutions in the following spadéd(m; 0, T) andL?(mx d; 0, T) of processes,
defined as

MK(m; £, T)
. . . ) (3.1.21)
:=<m-dimensional predictable RCLL procest) s.t. E |supgs| < co ¢,
[tT]
and
L¥(mxd;t, T)

-
= {mx d-dimensional predictable RCLL proces§) s.t.E [f ¢§dt} < oo},
t
(3.1.22)

fork=1,2,and0<t<T.

3.1.1 Each player’s reward terminated by himself

This subsection studies Game 3.1.1 where a player’s timaitdsgdetermined by his

own decision. We shall demonstrate that the solution to adintensional BSDE with

reflecting barrier provides to the two players’ value preess The optimal stopping
rules will be derived from reflecting conditions of the BSDEhe optimal controls

come from Isaacs’ condition, Assumption 3.1.3 on the Hamilns, which plays here
the role of the driver of the corresponding BSDE.
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The solution to the following system of BSDEs
T T
YI(0) =61+ f Hi(s X, Z;(9), us, vs)ds— f Z;"(9dBs + Ky (T) = K(0),
t t

YO(t) > Ly(), 0< t < T; fo T(Y;""(t) — Ly(6))dKY¥(t) = 0;

T

.
Y, (1) =62 + f Ha(s, X, Z,(), Us, Vs)ds— f Z,"(9dBs + Ky '(T) - K (1),
t t

T
YV () > Lo(t), 0<t < T; f (Y5(1) — La(1))dKS¥(t) = O,

° (3.1.23)
provides the players’ value processes in Game 3.1.1, watptbper choice of controls
u = u* andv = v* mandated by Isaacs’ condition. From now on, a BSDE with reéfigc
barrierin the form of (3.1.23) will be denoted &8s £, H(u, v), L) for short. The solution
to this BSDE is a triplet of processeg'(’, Z%", K“), satisfyingY"“V(:) € M?(2;0,T),
Z"V() € L(2x d; 0, T), andK“V(-) = (K;"'()), K3¥(-))" a pair of continuous increasing
processes iivi2(2; 0, T).

We focus on the game aspect in this section, making use oltsdie existence of
the solution to the BSDE, one-dimensional comparison #moand continuous de-
pendence theorems to be proven in section 3.2 and sectioMBe3proofs of claims
will not rely on developments in this section.

Theorem 3.1.1 Let(Y*Y, Z*¥, K"Y) solve BSDE (3.1.23) with paramet€ls &, H(u, v), L).
Define the stopping rules

Ti(y;r) i=inf{se[t,r]: y(s) < Li(9)} AT, (3.1.24)

and
oi(y;r) =inf{se[tr]: y(s) < La(9} AT, (3.1.25)
fory € C[0,T] and r € [t,T]. Let the stopping times(u,Vv) := 7} (Yi""(-);T) and

pi(u,v) = p; (Y3(-); T), and the controls e % and v € " satisfy Isaacs’ condition
Assumption 3.1.3. The quadrup{efu*, v*), o(u*, v*), u*, v) is a Nash equilibrium for
Game 3.1.1. Furthermore; @) = YV (t),i=1,2.

Proof. Let (Y*V,Z"V,K"") solve BSDE (3.1.23) with parameters, £, H(u, v), L).
SinceZ"" is square-integrable with respect to theneasure, not necessarily square-
integrable with respect to ti&Y measure, the processﬁszi""(s)d BsVand ft Z,"(s)dBg”
are localP-martingales, not necessariyV-martingales. For eveny= 1,2, -- -, let

T]=inf{set.T]:1Z2Y (9 = nj AT (3.1.26)

be the localizing sequences of stopping times. The Iocr;hb)zecessefATln Z(s)dBg
andft'ATl Z,"(s)dBg" areP*'-martingales on [OT]. Asn — oo, T — T, hence

-AT] :
f Z:LLJ,V ( S) d Bg,v N f Z;-J,V( S)d Bg’V, (3 1. 27)
t t
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and - .
[ zodee— [ z9as (3.1.28
t t

almost everywhere. Taking a stopping rajes .(t, T), and integratinglY;" from t
tort AT,

T AT
Y1) =Y (m AT + f ' Hi(s X, Z;Y(9), us, vs)ds
t

TAT]
- f CZ9Y(9)dBs + K (r A TD) - KD
t (3.1.29)

T AT]
:Y:LLJvV(Tt A T{l) + f hl(S, X, US, Vs)ds
t

T AT]
- ft CZ9Y(9ABEY + KW(r AT - K()

Taking conditional expectatial*'[-|.7], sinceY;*'(-) > Li(), Y;"(T) = &1, andKy (")
is an increasing process,

T ATD
YHY(t) =B [Y;N(Tt ATD) + f "ha(s X, Us ve)ds+ KY(r A TT) - KE¥(t)
t

d
T AT]

>E*Y [ La(7e A TDLratoety + E1lrato=T) + f hi(s X, Us, Vs)ds{ «%] .
t

(3.1.30)

According to the reflecting condition in BSDE (3.1.28),"((u, v) A T]) = K{*(1),
becausek}*'(-) is flat on{(w,t) € (@ % [0, T]) : Y;'() # Li(t)}. On{ri(u,v) < T},
Y1V (re(u, v)) = La(re(u, v); on{re(u,v) = T}, Y3(m(u, v)) = é1. Then,

Y1 ()
Te(UV)ATY
=E4 [YJL_J'V(Tt(U, V) AT + f ha(s, X, us, Vs)d% d@t}
t
=E*Y [YE'V(T?)]1|TQ<71(U,V)}| %]

+E%Y

Te(UV)ATY
La(7e(U V) Liruv <t o<ty + €1l muv <t nu=T) + f hai(s X, us, Vs)d%%}-
t
(3.1.31)

From Assumption 3.1.3 (2), both rewards inside the last itimmal expectations in
(3.1.30) and (3.1.31) are bounded by

(1+ T)Crwg (1 + sup |X(s)|2p) . (3.1.32)
0<s<T

But since ¥, B"Y) is a weak solution to the stochastic functional equatioi.(3),
there exists (cf. page 306 of Karatzas and Shreve (1988) §33)nstan€ such that

E[ sup IX(9)1%P
0<s<T

< C(1+ IX(0)) < co. (3.1.33)
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We then apply the dominated convergence theorem to thedasittonal expectations
in (3.1.30) and (3.1.31), to get

T AT]
lim B [ La(7e A TDLratoety + Elrato=T) + f hi(s X, Us, Vs)ds{ 9}]
|— 00 t

=E%Y [ Li(to)iret) + E1llfr=T) + f hi(s, X, us, Vs)d% f%] ;
t
(3.1.34)

and

) T(WV)ATT
r!lm E%Y [ La(7e(U V) Liruv <t rwi<Ts + €1l (muv<Tinu=T) + f hi(s X, us, Vs)d5< %]
— 00 t

71(U,V)
=E*" [ La(7e(U V)) Ly uy)<T) + E1Liryuy)=T} + f hi(s X, us, Vs)d5< %] :
t

(3.1.35)
For the fixed € [0, T], denote
(s, Us, Vs) = o (s, X) f(S X, ug, Ve), t < S< T. (3.1.36)
Then, from the change of measure (3.1.8) and the Bayes rule,
B[ Vi (T Lo cruan|
T 1 T 2 UV rn
=E | exp j: (s, Us, Vs)dBs — > t 0(s, Us, Vs)I“d s Y1 (T Limo<ruwy| i | -
(3.1.37)

Both random variables inside the expectations in (3.1.8%yerge to zero a.e., as
tends to infinity. Furthermore,

n

Ty 1 1
eXp{ f 6(s. s, Vs)dBs — = l6(s, us, vs)[°d S} Y (TOILTo<r )
t

. 2 ‘1 . (3.1.38)
< sup eXp{ f o(r, ur, v )dB: — S f l6(r, ur,vr)lzdr}lYi"V(S)l,
t<s<T t 2 t
and
S S
t<s< t t
S 1 S 1/2 2 1/2
<E| sup exp{f 26(r, uy, v)dB, — §f 2/6(r, ur,vr)|2dr} 3‘}] E[ sup(Yf"’(s)) ‘%} .
t<s<T t t t<s<T

(3.1.39)

By the dominated convergence theorem, in order that (3)t@&Werge to zero, it suf-
fices that the right hand side of (3.1.39) be finite. From tHend®n of the solutions
to reflected BSDEsS, as in section 3.2 and section 3.3, we khatv t

E [ sup (vaV(s))z] <o (3.1.40)

t<s<T
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holds, so it remain to show that

S S
E[sup exp{f 20(r, ur, v;)dB; — %f 20(r, ur,vr)|2dr}
t t

t<s<T

< oo (3.1.41)

Becausdd(s, us, Vs)| is bounded by the consta#, from Assumption 3.1.1 (3) and
identity (3.1.36), we know that the process

exp{f 26(s, Us, Vs)dBs — % f 26(s, us, vs)|°d s} (3.1.42)
t t
is a.e. bounded by the constaft’ times the exponenti@-martingale

Q() = exp{f' 20(s, Us, Vs)dBs — % .4|9(s, X, Us, VS)|2ds} (3.1.43)
t t
on [0, T] with quadratic variation process
) = (o2 ° 2
Q) 4ft (Q (s)j: 6(r, ur, V)| dr)ds (3.1.44)

But

() f 10(s, s, vo)2ds
t (3.1.45)

<A2T AT exp{f 49(s, Us, Vs)dBs — % f 16(6(s, us, v3)|2ds} .
t t

By the Burkholder-Davis-Gundy inequalities and inequd[&. 1.45), there exists a con-
stantC, such thai&

sup Q(s)} is dominated by

t<s<T

) i < 1/2
2CATY2NTE [(f exp{f 49(r, ur, vy )d B, — %f 16/(r, Ur,Vr)|2dr}dS) }
t t t

T S . 1/2
o AT (f E[exp{f 40(r, Uy, v )dB; — %f 166(r, ur,Vr)IZdr}] dS)
t t t

=2CATY2¥T(T - )2,

This proves (3.1.41).
We may now state that

Fuv [YT’V(TDH[T%H(UN)]‘ 7 t]
T L h ? V(M

=E exp{f 0(s, Us, Vs)dBs — Ef |6(S, Us, Vs)| ds} Y (T hm o
) t

—0,asn— 0.

A

(3.1.46)
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The expressions (3.1.30), (3.1.31), (3.1.34), (3.1.38)(&rlL.46) together lead to

Y;_j’v(t) > E%Y [ Ll(Tt)]]-{Tt<T} + é:l]]-{‘rt:T} + f hl(S, X, Us, Vs)d% %] S (3147)
t

and

7(U,V)
Y () = E“*V[Ll(n(u, )Lz uy<T) + E1l{ruy)=T) + f ha(s X, us, vs)d%%],
t
(3.1.48)

which mean that

Y(t) = BV RN (1u(U, V), o1, U, V)] = BYV[RY (11, o, U, V)2, (3.1.49)
forallpr € (1, T) and allry € (1, T).
To derive optimality of the controlsu{, v*) from Isaacs’ condition Assumption 3.1.3,

applying the compari§on theorem (Theorem 3.2.2 and 3.8 Bt first component of
BSDE (3.1.23) give¥; (1) > Y;* () a.e. on [0T] x Q. From the identity in (3.1.49),

E*Y [RE(z(U", V'), oo, V), U', VL] = YT (1)
ZY;"W (t) = Y [RH(re(u, V'), pr(U, V'), U, V) .Z%].
As a conjunction of (3.1.49) and (3.1.50), for alle .7 (t,T),
BV [RHm(U™, V), po(UF, V), UF, V)]
=BV [RY(re(U, V°), pe(U, V), U, V) LA (3.1.51)
>EY [RY (11, pr (U, V), U, V)L Z].

The above arguments proceed with arbitrary stopping times . (t, T), because
player II's stopping time; does not enter player I's reward.

(3.1.50)

By symmetry between the two players,
Y = BV IR (U, V), (U, V), U V)L, (3.1.52)
and
EYY [R2(re(u*, V), pr(U”, V), U*, V)] = BY Y[R (ry(U", V), pr U, V)R], (3.1.53)

Combining (3.1.50), (3.1.51), (3.1.52) and (3.1.53) ireplithat the quadruplet{ p*, u*, v*)
is a Nash equilibrium and their value procesgé$ are identified with the solution to a
BSDE with reflecting barrier with parameter® £, H(u*, v*), L). The optimal controls
(u*, v*) are chosen according to Isaacs’ condition Assumptior83Both players stop
respectively according to the pair of rule$,(o;), as soon as their expected rewards hit
the early stopping rewards (-) andLy(-) for the first time. m]

Remark 3.1.1 The absence ofi(:) from the reward is equivalent to that the ith player
never stops until time T, £ 1,2. The corresponding BSDE for his optimal reward
exhibits no reflecting barrier.

Remark 3.1.2 If the deterministic time T is replaced by a boundé&d}o7-stopping
time, it technically does not make anyfdience to results in this subsection.
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3.1.2 Controls observing volatility

This subsection discusses whether the inclusion of instaaius volatilities of the
value processes into the controls will expand the admissibhtrol sets.

For the rewards considered in this chapter, when usingalanandv, theP“V-conditional
expected rewards af¥'-Brownian semimartingales with respect to the filtratigh}o<i<t,
having the decompositions

t
EY[RH(r, o, u, V)] =A() + MPY(t) = AFY(t) + f Z,"(9dB;"(9);
0 (3.1.54)
B[R, o, u, V)LFA] =AYV (1) + M3V (1) = ASY(t) + fo Z,"(9dB,"(9).

The processeé!(-) and A?(-) have finite variation. The processkg(-) and M?(:)
areP“V-local martingales with respect t¢# }o<t<t. The predictable, square-integrable
processe&;"(-) and Z,"(:) from martingale representation are called instantaneous
volatility processes, the very integrand processes of thehastic integrals in the
BSDE (3.1.23). Because they naturally show up in the BSDE®ddy value process
of the game, we may include the instantaneous volatilZig:) andZ,"(-) as argu-
ments of the controla andyv, in the hope of making more informed decisions. Going
one step further, in the case of risk-sensitive controlgaited by Whittle, Bensous-
san and coworkers, among others, for example Bensoussahmsd-and Nagai (1998)
[5], the players are sensitive not only to the expectatibnsalso to the variances of
their rewards. El Karoui and Hamadéne (2003) identifiedli8] [risk-sensitive con-
trols to BSDEs with quadratic growth i"*(-) and Z,"(-), which made the problem
very tractable. Their value processes aiedent from the risk-indferent case only
up to an exponential transformation. Is it better to empwasensitivity to volatilities
by including them as arguments of the controls?

Among the set of closed loop controls, including instantarsevolatilities into the
controls means finding all deterministic measurable fometisy : [0, T] x Q x RY x

RY - Aj andv : [0, T] x Q x R x RY — A,, such that when applying the controls
U = u(t, X, Z1(t), Zo(t)) andvy = u(t, X, Z1(t), Z2(t)), for some{.%# }o<t<T-adapted pro-
cesse<Z;() andZy(-), the resulted instantaneous volatilitigs'(-) and Z,(-) in the
semimartingale decomposition (3.1.54) coincide with argatsZ;(-) and Z(:) of u
andv.

Including instantaneous volatilities into Markovian cai$ means the same as what
is described in the previous paragraph, exceptthaf0, T] x RY x RY x RY — A,
andv : [0, T] xRY x R4 x RY — A, are deterministic measurable functions, and that
U = u(t, X(1), Z1(t), Zo(t)) andv; = u(t, X(t), Zu(t), Zo(t)). This is the case about which
we are going to have more to say.
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The Hamiltonians in this case become

Ha(t, w(b), z1, (1, v)(t w(t), 21, 22))
:Zla__l(t’ w(t)) f (t’ w(t)’ (/.l, U) (t’ w(t), Z, 22)) + hl(t’ w(t)’ (/'l’ U)(t’ w(t)’ 4, 22));
HZ(t’ (,()(t), 2, (ﬂ’ U)(t’ (,()(t), 4, ZZ))

=2,07(t, w(t) F(t, w(t), (1, v)(t, X(), 22, 22)) + ha(t, w(t), (1. V)(t, w(t), 21, 22)),
(3.1.55)

for0<t<T,weQ,z andz inRY, andA; x A,-valued measurable functions, ¢/).
From Assumption 3.1.1 (3) and Assumption 3.1.2 (2), the Htamians are liner irg

andz, and polynomial in supw(s)|. To be more specific, we have
O<s<t

IHi(t, w(t), 21, Z2, (1, V)(t, w(V), 21, 22))| < Az| + Crwa (1 + sup|w(s)|2p), (3.1.56)

O<s<t

fori=1,2,all0<t<T,we Q,z andz in RY, andA; x A,-valued measurable func-
tions (u, v). The growth rates of the Hamiltonians (3.1.55) satisfyuksption 3.3.1 (2)
for the driver of the BSDE (3.3.2). With all other assumptamthe coéicients also
satisfied, by Theorem 3.3.2, there exists a solutigtt' (z*V, K+) to the following
equation

]
YEU(t) =1 + f Ha(s X(9). Z°(9). (1. v)(8 X(9. Z(9). Z2*(9)))ds
-[ 2By + KE(T) — KD,
T
YEU() > Lay(t), 0<t < T f (YE(t) - Ly ()dK™“(t) = O;
0 (3.1.57)

]
YEU(t) =5 + f Ha(s X(9, Z°(9), (. v)(S X(9, Z°(9), Z(9))ds

)
- f 200 (9)dBy + KE(T) — KE (1),
t

Y1) = Lo(t), 0<t < T; f T(Yg“’(t) — La(1))dKE(t) = 0.
0

Assumption 3.1.4 (Isaacs’ condition) There exist deterministic functipsis [0, T] x
RYxRYx RY — Aj andv* : [0, T] x R x RY x RY — A, such that

Hi(t, X, z1, (", v")(t, X, 22, 2)) = sup Ha(t, X, z1, (u, v7)(t, X, 22, 22));

7. 25€R?

Ha(t. X, 2o, (", v)(t X, 21, 22)) > SUP Ha(t. X, 2, (u", v)(t, X, 21, 22)).

7. 25€R?

(3.1.58)

forall0<t<T,x,zandzinRY andally : [0,T] x R xRY x RY — A; and
v:[0,T] xRYIxRIXRI — Ay.
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Associated with co@icientsf ando of the state proces¥(-) and with the rewardh,
L(-) andé, the admissible seZ x ¥ = {(u,Vv)} of Markovian controls that observe
volatilities are defined as the collection of all

(U, Vo) = (. )t X(0), Z1 (), Z,° (1)), (3.1.59)

for measurable functions: [0, T xRIXRIxXRY — A; andv : [0, T xRIXRIXRY —
A,. In particular,

(UL V) = (0, )6 X)L 207 (0, 2 (1), (3.1.60)
(U ) = (s, )(E X0, Z5Y (0, 25 (1), (3.1.61)

and ) )
(U5, ) = (7, ) (8 X (D), 24 (), 28 (1) (3.1.62)

Assumption 3.1.4 implies Isaacs’ condition, Assumptioh.3. Then we reach the
same statements as in Theorem 3.1.1, the orffgr@ince beingY*V, Z%V, K*“Y) re-
placed by YV, z#v, K*V), and BSDE (3.1.23) replaced by BSDE (3.1.57).

In fact, by Theorem 3.3.1, there exist deterministic meaisier mapping#|” and
B5" 1[0, TIx RY — RY, such thaZ;™(t) = B1"(t, X(t), andZ,"(t) = B,"(t. X(1)),
forallO <t < T. Hence (3.1.59) becomes

(U Vo) = (e, v) (8 X (1), B (8 X(D). By (. X(1)), (3.1.63)

a pair of Markovian controls.

3.1.3 Rewards terminated by either player

In this subsection, Game 3.1.2 is studied. One player’s tovguit the game is deter-
mined by the conjunction of both players’ stopping rules.sden as one player stops,
the Game 3.1.2 is terminated. When quitting the game, plagerives reward

L1(7), if player 1 stops first;

TAD
R3(7, p, U, V) = f hi(s u,v)ds+ { Ui(p), if player 2 stops first; (3.1.64)
° &1, if neither stops before timg;

whereas player Il receives reward

U,(7), if player 1 stops first;

TAP
R3(7,p, U, V) = f hy(s, u, v)ds+ 4 La(p), if player 2 stops first; (3.1.65)
° &, if neither stops before time.

Optimal controls for Game 3.1.2 will again be the paif, {*) from Isaacs’ condition,
Assumption 3.1.3. The interaction of stopping rules seeomspticated. Let us tem-
porarily ignore the controls and focus on reducing the gafietapping to a tractable
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formulation.

For any fixed stopping ruleg® andp? in . (t, T), let player | choose stopping rule
7 = 7t from .7(t, T) and player Il choosg; = p{ from .7 (t,T) to maximize their
respective rewards

R (7w 7, U, V)
TApY o
::f hi(s X, Us, Ve)ds+ La (o) Lr,<p0) + V(o) Lipocr,<y + E1Lirnp0=T);
t
RTZ(T?? Pt U, V)

0
T ADL
. 0
- f o(S X, Us, Va)dS+ Lo(oo)T ety + Ua(t)T ooy 1y + €21 oy 11
t

(3.1.66)

in conditionalP*V-expectations. With a little abuse of the notatldp(-) andU»(-) as
in Assumption 3.1.2 (1), rewrite

0 0 .
Ul(pt)]]-lp?srt<T} + é:l]]‘th/\p?:T} = Ul(pt)]]-i‘reptol'

) ; (3.1.67)
UZ(Tt)]l[TtOSpKT) + é‘:zﬂ‘[TtO/\p‘zT) = Uz(Tt)]]‘[mZ‘r?)'

But suggested by (3.1.66), dm > p?}, player I's running reward is cutfbat time
p?, and terminal reward remain; (0°) anyway, so he will not profit from sticking to
the game after timg?. Symmetrically, player Il will not profit from stopping afte?.
Because of the inflierence to late stopping, maximizing expected rewardsgg)is
equivalent to choosing, = 7 from . (t, p%) andp; = pi from .#(t, %) to maximize
the conditionalP*V-expectations of

TLADY
f hl(s’ x? Us, VS)dS+ Ll(Tt)ﬂ[ﬂ(p?) + Ul(p?)]l{‘r‘:p?]y
! (3.1.68)

7O Apt
f ha(s, X, Us, Ve)ds+ La(on) 1Ly, <0, + Ua(tD) 1, _r0).
t

In the spirit of Nash’s 1949 original definition of equilibm, the equilibrium stopping
rules (1, p;) of Game 3.1.2 is a fixed point of the mapping

rstT)x.2tT) - L T)x (L T),

(3.1.69)
(2. 00) - (1. D).

To show existence of equilibrium stopping rules, iffszes to prove a.e. convergence
of iteration vial', starting from a certain initial stopping rule.

This reduction will solve Game 3.1.2 by approximating itlwé sequence of much
simpler optimization problems. The optimization is in a glified form of Game
3.1.1, hence it can be associated with a BSDE with reflectargidy. The admissi-
ble set% x ¥ of controls are still closed loop. At every step of the itemat there
is no interaction in either controls or stopping. Withoueiraction, the resulting two-
dimensional BSDE for the players consists in fact of two safgaone-dimensional
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equations. Hence the comparison theorem for one-dimesisemuations applies to
the derivation of the pair of equilibrium controls*(v*) from Assumption 3.1.3 at ev-
ery step of the iteration. Saif, v*) should also be equilibrium in the limit. The first
time when the value process hits the lower reflecting bouyndathe optimal time to
stop.

Lemma 3.1.1 Let the players’ rewards be as in (3.1.68), the value prog4ssas in
(3.1.15), andqu*, v*) asin Isaacs’ condition, Assumption 3.1.3. The triit’, Z4“v, K*“)
satisfies ¥V(-) e M?(2; 0, T), Z*V(-) e L?(2xd; 0, T), and K*V(-) continuous increasing
in M2(2;0,T) solves
0? o
Y() =U1(0?) + ft Hi(s X, Z}"Y(9), Us, Vs)ds— j: Z"(9)dBs
+K(ep) - K1), 0< t < pf;
o;
Y;(t) > La(t), t e [0, p71; f (Y7(t) — La(0))dK™M(t) = O;
o 0 o (3.1.70)
Y20 =Ua) + [ Ha(s X 29 usvds— [ 289
t t
+ K3V (op) - K3V, 0 < t < 77;

YEY(0) > Lo(t), t € [0.77); fo " (VI - L) dKY() = 0.

For player |, choose the stopping timg := 7} (Yf*"(-);p?), and for player II, choose
the stopping time} := p; (Y;""(-); r?), where the stopping rules andp* are defined
in (3.1.24) and (3.1.25). The quadruplet, po*, u, v*) is optimal in the sense that
B[R (U, V). p0 U VIF] 2 B[R o WYL, Ve (4 pf), Vu € 2

EYY R0, pH(ur, V'), U, V)L = BY VR, pr, U, V)L, Vit € 2 (6, 70), YV € 7.
(3.1.71)

Furthermore, (t) = YV (t),0<t< T,i=1,2.
Proof. Apply Theorem 3.1.1 to each individual player. m|

The following arguments proceed fby > 0. If in generalh; > —c bounded from be-
low, then the arguments should be tailored by shifting uplwahe rewards and value
processes.

Now we start an iteration vi&i, defined by (3.1.69), with) = p = T, andY?()) =
Y9() = +eo. Put the controlsy(v) = (u*,v*). Asin Lemma 3.1.17" andp* are the
two players’ optimal stopping rules when their respectentinal times are)® and
7%, In the language of the fixed point formulation? (o) = T'(z2, o). Apparently,
i vpl <A p? =T. Assume

vl <t A pit (3.1.72)
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for n. Denoter™! andpf*?! as their stopping rules that attain the superema in

F

§ TAPL
Yty = sup E'YV [f hi(s X, ug, ve)ds+ La(te)Lir<pn + U1(0f) Liz=pn)
t

e (tpp)
(3.1.73)
and

TP Apt
Y&t = sup EYV [f ha(s, X, g, ve)ds+ La(o) Lip<epy + Uz(T?)ﬂlm:rp)' «%]
t

peS (LT])

(3.1.74)
given the two players’ respective terminal times afeand ", then ¢}, p*1) =
(7], oM in the fixed point language. There exists a pair of stoppings ¢, p™*1)
that attains the suprema in (3.1.73) and (3.1.74), by repiaihe notationsC, p°)
with (7", p") and ¢*, p?) with (z™1, p™1) in Lemma 3.1.1. According to Lemma 3.1.1,
together with (3.1.9) and (3.1.19), far= 1,2, - - -, the processe¥"(-) € M?(2;0,T),
Z"(-) e L3(2 x d; 0, T), andK"(:) continuous increasing iN?(2; 0, T) satisfy

dY{(s) = = Ha(s X, Z{(9), U, vo)ds+ Z;()d Bs — dKi(s)
= — hy(s X, ug, vy)ds+ Z(9dBY Y - dK{(9), t < s< pf™;
Y2t =Ua(ef™);
dY3(s) = — Ha(s X, Z3(9), ug, vi)ds+ Z5(s)dBs — dK3(s)
= — h(s X, U, v)ds+ Z3(9dBY Y — dK)(9), t < s< o,
Y3 () =Ua(e ).

(3.1.75)

Integratingd Y] from pf to oY, anddYj from{' to 71, then taking?!" ¥ —expectations,
and conditioning onZ,; and.#n, respectively, we obtain

n

" hu(s XUl Vo) ds— f

n
t

n—

. o ' )
A =E“*v“[u1<p?-1) - Z0(9dB

ot P

K1) - KD 3&‘]
>E' Y [U1(of DI Z ] = B [Ur(])Z] = Ur(op);
ot s (3.1.76)
Y5 () :EU‘»V*[UZ(Tpl) + f ha(s, X, U, vi)ds— f Z5(9dBY Y
7 T

+ K3 ™) - K3()

-
2BV [Ua(r )] 2 BV [Up(e)| F ] = Ua().

The first pair of inequalities in the above two entries conwmrirthe nonnegativity
assumptions oy andhy, and the fact thak;(-), Kz(-) are increasing processes, once
more with the help of the same localization technique in tteopof Theorem 3.1.1.
The second pair of inequalities come from the induction mggiont v pl' < 71 A
P, and the monotonicity assumption 0{-) in Assumption 3.1.2 (1). One can get
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rid of conditional expectations as in the final pair of eqtirdi, because by Assumption
3.1.2 (1) the procesH () is progressively measurable with respect to the filtration
(Fdocter. BUtU1(o]) = YM(oM), andUa(]) = Y2*(e]), henceY*i(of) < Y(op),
and Y3 () < Y5(z). By the comparison theorem (Theorem 3.2.2 and Theorem
3.3.3) in dimension one(*(s) < YI(s), for all t < s < pf!, andYS*(s) < Y(s), for
allt < s< 1. From Lemma 3.1.1, for ath = 1,2,---, the optimal stopping times
=1 (Y{‘*l(-);p{‘) < pf, andpf*! := pr (YQ”(-); T{‘) < 17!, where the stopping rules
7" andp* are defined in (3.1.24) and (3.1.25). ThéH1(:) < Y"(:) implies7*! < 7},
andp! < pl'. Finally, we have finished thea¢ 1)th step of mathematical induction
by concluding

v pM < 70 A Pl (3.1.77)

The sequenced(-)}n, {77'}n and{p{'}, from the induction are all decreasing, thus have
pointwise limitsY*(-), ¢ andpjy.

By analogy with the argument used to prove Theorem 3.1.1,ave h
T AP} 1
YI(t) zf ha(s, X, us, vo)ds+ La(7t)Lir<pn) + Ul(pP_l)]l[Tl:p{\—ll
t
n/\p?’l )
+f Z)(9dBeV;
t
T Aoy
Y2(t) zf ha(s X, U5, Vs)ds+ Lo(o0) Ly <rt) + Uz(T?il)]].{p‘:Ttnfl)
t

Pt/\T{F1 )
+ f Z0(s)dBY.
t

The inequalities in (3.1.78) become equalities; it 77, u = u* andp; = pf', v = V*.
First taking corresponding conditional expectations of (8) with respect to#, the
stochastic integrals vanish still by the localization teigue as in proof of Theorem
3.1.1. Then lettingh — oo, and using the equivalence between maximizing (3.1.66)
and maximizing (3.1.68), we arrive at

(3.1.78)

Y;(t) = BV [RNet, pf, U, VO] = B[R (1o, 07, U V)T, Yo € L (L T), € %

Y5(t) = BV [R(ry. pp U V)FA] = BV VRN, o, UT V)AL, Ypr € (4 T), €7,
(3.1.79)

with rewardsR* andR? as in (3.1.66).

The inductive procedure produces a Nash equilibriaime(, u*, v¥) for Game 3.1.2.
The equilibrium controlsi(*, v¥) come from Isaacs’ condition, Assumption 3.1.3. The
equilibrium stopping rulest(, p*) are the limits of the iterative sequence of optimal
stopping rules, thus provide a fixed point of the mapgirdgfined in (3.1.69).

Theorem 3.1.2 Under Assumptions 3.1.1, 3.1.2 and 3.1.3, if h is boundex Below,
then the limit(r*, p*, u*, v*) from the iteration is an equilibrium point of Game 3.1.2.
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Remark 3.1.3 Game 3.1.2 always has a trivial equilibriutt,0,0). The iterative
procedure in this section can be numerically implementedietermine if the limiting
equilibrium point(z*, p*, u*, v¥) is trivial or not.

3.2 A multidimensional reflected BSDE with Lipschitz
growth

Starting from this section, we solve multidimensional BSD#th reflecting barriers,
the type of BSDESs associated with Game 3.1.1, and provideuseful properties of
the equations, the comparison theorem in dimension onehartiéorem about contin-
uous dependence of the solution on the terminal values. iBbaskions on the BSDESs
are postponed until here, only to finish the game part firgtofrof results to be stated
from now on in this paper do not depend on any earlier argusnent

This section assumes the following the following Lipsclgtawth condition and inte-
grability conditions on the parameters of the equations.

Assumption 3.2.1 (1) The driver g is a mapping g[0, T xR™x™d — R™ (t,y, 2)
g(t,y, 2). For every fixed ¥ R™and ze R™Y, the process$g(t, Y, 2)}o<t<T iS {Zt}o<t<T-

predictable. For all te [0, T], d(t, Y, 2) is uniformly Lipschitz in y and z, i.e. there exists
a constant b> 0, such that

|g(t’ Y, Z) - g(tvy’ 2)' < b(“y_ YH + ”Z_ ZH), (321)

forallt € [0, T],y e R™and ze R™9. Furthermore,

§
2 (o8] L.
E[fo g(t, 0, 0)%dt| < co. (3.2.2)

(2) The random variablé is .#t-measurable and square-integrable. The lower reflect-
ing boundary L is continuous, progressively measurabld, satisfies

E[ supL*(t)?| < co. (3.2.3)

[0.T]

Also, (T) < ¢, a.e. onQ.

Under Assumption 3.2.1, this section proves existence amgueness of solution
(Y, Z,K) to the following BSDE

T T
Y(t) = ¢+ f o(s Y(9) Z(9))ds— f 2(9)dBs + K(T) - K(t):
! ! (3.2.4)

.
Y(t) > L(t),0<t<T, f (Y(t) - L(t)dK(t) = O,
0
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in the spaces
Y() = (Ya() -+, Ym(?)) € M%(m; 0, T)

={m—dimensional RCLL predictable procest) s.t.E[ supg?
[0.T]

<l

T
={m>< d-dimensional RCLL predictable procest) s.t.E[f ¢t2dt} < oo};
0

Z() = (Z(), - . Zm()) € L*(mx d;0,T)

K(-) = (K1(), - - , Km(-))": continuous, increasing process\if(m; 0, T),
(3.2.5)

where the positive integen is the dimension of the equation. The backward equation
and the reflecting condition in (3.2.4) should be intergdetemponent-wise. It means
that, for everyi = 1,---, m, in theith dimension,

T T
Vi) = & + f 6(s Y(9. Z(9)ds— f Z/(9)dBs + Ki(T) - Ki(1);
! ! (3.2.6)

i
Yit) > Li(t), 0<t<T, f (Yi(t) - Li)dKi(t) = .
0

The proces¥i(-) is motivated by the Brownian noid€#-) as the "fuel”, whose amount
is determined by a "controlZ;(-). The driverg; leadsY;(-) towards the "final desti-
nation” &. Whenever theth componen;(:) drops to the lower reflecting boundary
Li(+), it receives a forc&;(-) that kicks it upwards. Whelf(-) stays above levdl;(-),
the forceK;(-) does not apply. The proceks(-) stands for the minimum cumulative
exogenous energy required to kegp) above level;(-). Them equations compose a
system ofm"vehicles” whose "drivers” track each other. For notatibsienplicity, the
vector form (3.2.4) is used as a shorthand.

Lemma 3.2.1 For any processeéY?(-), Z°(-)) € L?(m;0, T) x L?(m x d;0, T), there
exist unique(Y2()), Z1(-)) € M?(m;0,T) x L2(mx d; 0, T), and KX(-) € M?(m; 0, T),
such that

dYi(t) = —g(t, YO(t), Z°(t))dt + ZX(t)dB, — dK(t), 0< t < T;

1 _ g
YA(T)=¢ ) (3.2.7)
Yit) > L(t),0<t<T, f (Y1) - L(t))dK!(t) = 0.
0
Proof. For anyi = 1,---,m, in theith dimension, by Corollary 3.7 of El Karoui,

Kapoudjian, Pardoux, Peng and Quenez (1997) [19], thestseai unique solution
(Y}(),ZL()) € M?(1;0,T) x L*(d; 0, T), and a continuous, increasing proc&ss:) €
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M?(1;0,T), to the one-dimensional reflected BSDE
dY(t) = —gi(t, YO(t), Z°(t))dt + Z'(t)d B — dK(t), 0< t < T;
YH(T) = &;

. (3.2.8)
Yit) > Li(t),0<t<T, f (Y1) - Li(t)dKX () = 0.
0

The processe¥*(-) := (YI(-),---, YL, Z*) = (Z3(), -+, Z4()), andKY(:) :=
(KI(), -+, K&()) form the desired triplet. O

To prove existence and uniqueness of the solution to thei-dliolensional BSDE
(3.2.4) with reflecting barrier, it $lices to show that the mapping

A L2(m; 0, T) x L2(mx d; 0, T) —» L% (m; 0, T) x L(mx d; 0, T),

(0. 79) s (YL Z1). (3.2.9)
is a contraction.

Theorem 3.2.1 The mapping\ is a contraction froniL?(m; 0, T) x L?(mx d; 0, T) to
L2(m; 0, T) x L2(mx d; 0, T).

Proof. For a progressively measurable procgsy the normj|¢||, = E[fOT tzdt] is

equivalent to the norriig|l2s = ,/E[fOT eft tzdt]. We prove the contraction statement
under the norni-||25. SupposeX°(-), 2%()) and (Y°(-), Z°(-)) are both invi2(m; 0, T) x
L%(mxd; 0, T). Denote ¥*(-), Z'(-)) = A(Y®(), Z°()) and (Y*(-), Z*()) = A(Y°(-), Z°()).
Applying Itd’s rule toe®'(Y1(t) — Y(t))?, and integrating the derivative frotio T,

YY) - YD) + 8 f €5(YY(s) — YY(9))’ds+ f 5(ZX(s) - ZX(s))%ds
t t
T — — —
=2 ft 5(YH(9) = YH(9)(9(s, YO(9), Z%(9) — 9(s YO(9), 2°(9))ds
+2 f ! €5(YY(s) - YX(9)(ZX(s) — Z}(9))ds+ 2 f ! e5(YY(s) — YX(9))(dK(s) — dK(s))
t t

+2 ft ' S(YY(9) - Y(9)(ZX(s) - Z}(9))dBs.
(3.2.10)
Becausg is uniformly Lipschitz,
19(s Y°(9), 2°(9) - 9(s, Y°(9), Z°(9) < blYO(s) = YO(3)| + biZ%(s) - Z°(s). (3.2.11)
For every constant; > 0,
26%(YH(9) - YH(9)(9(s Y9, Z°(9)) - 9(s YO(9), Z%(9))

Sa'leBS(Yl(s) - Y_l(s))Z n Z_bZeBS(Yo(S) _ Y_O(S))z " Z—bZEBS(ZO(S) B Z_O(S))Z (3.2.12)
a1 a
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For every constant, > 0,

2 f ! €5(YY(s) - YL(9)(ZX(s) — Z (9))ds
t (3.2.13)

<ao€5(YH(s) — YX(9))? + ieBS(zl(s) - ZY9))%
@2

Since, by definition of the mappintg, Y(-) > L(-), andY*(-) > L(), (Y*(-)-L(-))dK() =
(YX(") = L())dK2()) = 0, andK*(-) andK(:) are increasing, we have,

f ' &(YH(9) - Y(9)(dKX(s) - dK*(9))
t

_ f " (Y9 - L(9) - (TS - LEN(KAS - dRY(S) (3.2.14)

T _ T
<- f 5((YX(9) - L(9))dK (s) - f €5(YX(s) - L(9)dK*(9)
t t
<0.

Combining (3.2.10), (3.2.12), (3.2.13) and (3.2.14)jnett = 0, and taking expecta-
tion on both sides of the inequality,

B-a1- ag)E[ ft ! €5(YY(s) - YX(9))%ds| + (1 - a—lz)E[ ft ! &5(ZY(s) - Z_l(s))zds]

sZ_bZE[ f T S(YO(9) - YO(9)%ds| + Z_bZEU T AaCh Z)(S))st}'
L a1 t

a1

(3.2.15)

Becauser:, a» andg are arbitrary, we may let; = 802, ap = 2, and8 = a1 + a2 + % =
8b% + 3, then from (3.2.15),

= - 1 = 1
IYE = YHE, + 112t = ZM5, < §||Y° ~YOl5, + §||z° - 2°3,. (3.2.16)

The mapping\ is indeed a contraction. m|

Proposition 3.2.1 The BSDE (3.2.4) with reflecting barrier has a unique sohutiio
M2(m;0,T) x L2(mx d; 0, T).

Proof. The solution is the unique fixed-point, say({), Z(-)), of the contractiom.
Since (), Z(-)) € LA(m; 0,T) x LAmx d: 0, T), (Y(, Z()) = A(Y(),Z(-)) is also in
M?(m;0,T) x L2(mx d; 0, T) by Lemma 3.2.1. O

Theorem 3.2.2 (Comparison Theorem, El Karoui, Kapoudjian, Pardoux, Pemgl
Quenez (1997) [19]) L

SupposgY, Z, K) solves (3.2.4) with parameter ¢t g, L), and(Y, Z, K) solves (3.2.4)
with parameter sef¢, g, L). Let dimension of the equations be-ni. Under Assump-
tion 3.2.1, except that the uniform Lipschitz conditionyoméeded for either g ag, if
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Q)¢ < f_ a.e,;

(2)gt.y.2 <9t y.2),a.e.(t,w) [0, TI xQ,Y(y,2 € R x RY; and
(3) L(t) < L(t), a.e.(t,w) € [0, T] x Q,

then

Y(t) < Y(t), a.e.(t,w) € [0, T] x Q. (3.2.17)

Theorem 3.2.3 (Continuous Dependence Property) L
Under Assumption 3.2.1, suppose téa, K) solves RBSDE (3.2.4), and th{at Z, K)
solves

_ _ T _ _ T _ _ _
Y =é+ f o(s V(9. Z(9)ds— f Z(9dBs + K(T) - K1)

T (3.2.18)
Y(t) > L(t),0<t<T, f (Y(t) - L(t))dK(t) = O,
0
then there exists a constant number C, such thatfod allt < T,
_ T _
E[(Y(t) - Y(1)’] +E f (Y(s) - Y(S))zdS}
0
(3.2.19)

T — —
+E f (Z(9) - Z(9)*ds| + E[(K(t) — K()’]
0

<CE[(¢ - &)°].

Proof. Applying Itd’s rule to®(Y(t)-Y(t))?, integrating front to T, and then repeating
the methods in proof of Theorem 3.2.1,

YY) - Y1) + B f 5(Y(s) - Y(9)%ds+ f 5(Z(9) — Z(s))%ds
t t
_ T _ o
=&T(¢-¢)P*+2 ft e5(Y(9) - Y(9)(9(s Y(9), Z(9)) — 9(s Y(9), Z(9)))ds
T _ _ T _ _
+2 ft 5(Y(s) - Y(9)(Z(s) - Z(9))ds+ 2 ft 5(Y(s) — Y(9)(dK(s) - dK ()
T — —
+2 ft 5(Y(s) - Y(9)(Z(s) - Z(3))dBs
<&T(E- 8%+ (a1 +az+b) f ! €5(Y(s) - Y(9))%ds
t

+ (b—z + i) f ! €5(Z(s) - Z(9))?ds+ 2 f ! €35(Y(s) - Y(9)(Z(s) — Z(5))dBs.
a1 a2/ Jt t
(3.2.20)
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Rearranging the terms in (3.2.20), and taking expectations

E[(Y(H) - YO)’] + (B-b—a1- az)E[ ft ' &(Y(s) - Y(9)ds

2
+(1—b——i)E

ay @2

f ! &5(Z(s) - Z(s))d s] (3.2.21)
t

<éTE[(¢ - &)

In (3.2.21), lettingry = 4b?, a2 = 4, andB = b+ a1 + a2 + 5 = 4b? + b+ 2 gives

SE[(Y(H) - Y(1)?] + %E ft ! S(Y(s) - Y(9)ds| + %E ft ! 5(Z(9) - Z(s))%ds

<TE[(¢-&)?), forallO<t<T.

(3.2.22)

Hence both
E[(Y(t) - Y(1))?] < TE[(£ - &3], forall 0<t < T, (3.2.23)

and

T _ T _ _
E[ f (Y(3) - Y(9)%ds| + E f (9 - Z(s))zds] <2TE[(6 - &7  (3.2.24)
0 0

hold true. _ _
It remains to estimate tHe?-norm of (K(t) — K(t)). IntegratingdY anddyY from 0 tot
gives

K({t) = Y(0) - Y(t) - j: a(s Y(s), Z(9))ds+ fot Z(9)dBs, (3.2.25)
and

_ _ _ t _ t_

K(t) = Y(O)—Y(t)—f a(s Y(s), Z(s))ds+ f Z(9)dBs. (3.2.26)

0 0

Then, there exists a constant num@egr such that

(K(t) - K(t)?
J— — t — —
Scl((Y(O) = Y(0))* + (Y(t) - Y(1)* + t j; (9(s Y(9), Z(9) - 9(s Y(9), Z(9)))*ds

t
Y
+ fo 29 - 2(9) dss).
(3.2.27)
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Taking expectation on both sides of (3.2.27), by Lipschitmdition Assumption 3.2.1
and Itd’s isometry, forall &<t < T,

E[(K(D) - K(1)?]
sCl(]E[(Y(O) —Y(0)Y] +E[(Y(t) = Y(t))*] + 2T sz[ f T(Y(t) - \?(t))zdt]
0

. (3.2.28)
+(2TH + 1)E f (Z(t) - Z_(t))zdt])
0
<4C(TK + 1)EFTE[(£ - ),
last inequality from (3.2.23) and (3.2.24). m]

3.3 Markovian system with linear growth rate

This section shows existence of the solution to the multetisional BSDE with re-
flecting barrier within a Markovian framework. The growtheaaf the forward equa-
tion is assumed polynomial in the state procésand linear in both the value process
Y and the volatility proces&. The comparison theorem in dimension one and continu-
ous dependence property of the value process and the Wglptidcess on the terminal
condition is also provided.

The Markovian system of forward-backward SDE’s in questiathe following pair of
equations.

X)) =x0<s<t; a3l
{ dXH(9) = (s XU(9)ds+ (s X(S)dBa t < s< T. (3:3.1)

YX(9) =E(XX(T)) + f " g X0, Y, 2 () - f " 2%(d8
+ KYX(T) = KY(9); (3.3.2)

Y(9) 2L(s, X*(9), t<s< T, fT(Yt’X(s) — L(s X**(9)))dK"*(s) = 0.
t

For anyx € R!, the SDE (3.3.1) has a unique strong solution, under Assompt3.1
(1) below (cf. page 287, Karatzas and Shreve (1988) [33])olAt®n to the forward-
backward system (3.3.1) and (3.3.2) is a triplet of proceége’, 24>, KtX) satisfying
(3.3.2), whereYt* € M?(m;0,T), Z** € L?(mx d;0,T), andK"* is a continuous,
increasing process i?(m; 0, T). The superscript(x) on X, Y, Z, andK indicates the
statex of the underlying process at timet. It will be omitted for notational simplicity.

Assumption 3.3.1(1) In (3.3.1), the drift f: [0,T] x R' — R/, and volatility o :
[0, T]xR" — R4, are deterministic, measurable mappings, locally Lipscii x uni-
formly over all te [0, T]. And for all(t, x) € [0, T]xR', | f(t, X)[>+|o-(t, X)[> < C(1+]x?),
for some constant C.

(2) In (3.3.2), the driver g is a deterministic measurablepmpiag g : [0, T] x R' x
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RM™d 5 R™ (t,X,Y,2) - g(t, X, Y, 2). And for all(t, X, y, 2) € [0, T] xR x RMx R™d,
lg(t, X, Y, 2)| < b(1+ |XP + |yl + |2), for some positive constant b.

(3) For every fixedt, x) € [0, T] x R, the mapping {1, X, -, -) is continuous.

(4) The terminal valug : R' — R™, x — &(x), is a deterministic measurable map-
ping. The lower reflecting boundary L[0, T] x R' — R™, (s,x) +~ L(s X) is de-
terministic measurable mapping continuous(&x). They satisfE[£(X(T))?] < oo,

E[ supL*(s, X(s))z] < o0, and L(T, X(T)) < &(X(T)), a.e. onQ.
[0.7]

Theorem 3.3.1 Suppose that Assumption 3.3.1 holds, except the growtlcoatdition

on g. If the driver s, x,y, 2) in the reflected BSDE (3.3.2) is Lipschitz in y and z,
uniformly over all se [0, T] and all xe R!, then there exist measurable deterministic
functionse : [0,T] xR — R™ andpg : [0,T] x R' — R™d, such that for any
0<t<s<T, YWX9) = a(s X(9), and 2*(s) = B(s, X**(s)). The solutions to the
BSDE are functions of the state process X.

Proof. First, the one-dimensional case= 1. There exist measurable, deterministic
functionsa” : [0, T] xR' - R, b": [0, T] xR' — RY, such thatforany @ t<s<T,
the solution Y1, Z&XM) to the penalized equation

T T
YIS (T + [ gtr X0, YR, 29 - [ 2090y

S

.
+n f (YN () — L(r, XUX(r)))~dr
’ (3.3.3)

can be expressed &-9"(s) = a"(s, X¥(s)), andZt¥N(s) = b"(s, XPX(9)); in par-
ticular, Y&ON(t) = a'(t, x). This is the Markovian property of solutions to one one-
dimensional forward-backward SDE’s with Lipschitz drivetated as Theorem 4.1 in
El Karoui, Peng and Quenez (1997) [20]. Their proof uses tbar® iteration and the
Markov property of the iterated sequence of solutions,dttell being an interpretation
of Theorem 6.27 on page 206 of Cinlar, Jacod, Protter ancp8t{a980) [9]. Analyzed

in section 6, El Karoui, Kapoudjian, Pardoux, Peng and Quéh@97) [19], its solu-
tion (Y&Xn, Z(E0.m converges to some limitt*, Z4%) in M2(m; t, T) x L2(mx d; t, T).
The penalization term fOS(Y(‘vX)v“(r) — L(r, X¥*(r)))~dr also has at?(m; 0, T)-limit
K'X(s). The triplet (YtX, Zt% K%*) solves the system (3.3.1) and (3.3.2). But the con-
vergences are also almost everywher&xx [t, T], so

YHX(9) = lim YX0(s) = lim sup(@’(s, X*(9))) = lim sup@”)(s, X*(9)) =: a(s, X"X(s)),
o i (3.3.4)

and

Z%(s) = lim 290 (g) = lim sup(b"(s, X¥*(9))) = lim sup(b™)(s, X*X(3)) =: b(s, X*X(9)).

N—oo n—oo
(3.3.5)
Back to a general dimension By Theorem 3.2.1 and Proposition 3.2.1, the sequence
(YL zmh) = A(Y",Z"), n = 0,1,2,---, iterated via the mapping. as in (3.2.1),
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convergestoY, Z) a.e. omx[t, T] and inM?(m; 0, T)xL?(mxd; 0, T). If one can prove
Y1(s) andz(s) are functions of § X(9)), so is every Y"(s), Z"(s)) by induction. Then
the theorem holds, becausé?) is the pointwise limit off(Y"(s), Z"(9))}n. The claim
is indeed true. Starting with®¥-0(s) = o%(s, X(s)), andZt¥-9(s) = gO(s, X(9)), for any
measurable, deterministic functiom®: [0, T]xR' — R™ ands® : [0, T] xR' — R™d
satisfyinga®(-, X**(-)) € M?(m; 0, T), andg®(-, X**(-)) € L?(mxd; 0, T). In an arbitrary
ith dimension, ki <m,

.
YiH(9) =& (X"X(T)) + fs gi(r, XX(r), @°(r, X(r)), B°(r, X(r)))dr

- f ' ZH(NdB: + KH(T) - K(s); (3.3.6)

X 2Li(s X(9), t< < T, f (V9 — Li(s X)) = 0
t

From the one-dimensional result, there exist measurabtermiinistic functionszxil :
[0,T]xR' — R, andg! : [0,T] xR — RY, such thaty™(s) = aX(s X*X(9)),
andZ"™(s) = gi(s XtX(9), forall 0 < t < s < T. Leta’ = (a},---,al), and
B = (Bl BLY, thenY®¥1(s) = al(s, X X(3)), andZt¥Y(s) = pY(s X"X(9)), for all
O0<t<s<T. o

Remark 3.3.1 To prove the above theorem, besides using the notion of tweédnar-
tingales” as in Cinlar et al (1980) [9], the two deterministfunctions can also be
obtained by solving a multi-dimensional variational in@djty following the four-step-
scheme proposed by Ma, Protter and Yong (199%) [

The rest of this section will be devoted to proving existesfcgolutions to the reflected
forward-backward system (3.3.1) and (3.3.2) under the ggion 3.3.1. We shall

construct a specific sequence of Lipschitz drivggY$o approximate the linear-growth
driverg. The corresponding sequence of solutions will turn out toveoge to the sys-
tem (3.3.1) and (3.3.2). We then approximate the continlinaar growth drivelg by

a sequence of Lipschitz functiogs.

Lety be an infinitely diferentiable mapping from™ x R™ to R, such that

TR Iy +12% < 1 337
,2) = 3.
" 0, Iy +12* > 4,
andy a rescaling ofs by a multiplicative constant such that
f y(y,2)dydz= 1. (3.3.8)
RMyRmxd

The functiony is a kernel conventionally used to smooth out noffiedentiability, for
example, by Karatzas and Ocone (1997) [pr to approximate functions of higher
growth rate, for example, by Hamadéne, Lepeltier and P£8g7) [26].
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The approximating sequengeis defined as

¢t xy.2) =Py (2, ) f olt, X, y1. 21)0(n(y — y1). Nz z2))dyrdz. (3.3.9)
n n RmXRmxd

According to Hamadéne, Lepeltier and Peng (1997) [26]sttuence of functiorg’

has the properties:

(a) g" is Lipschitz with respect toy( 2), uniformly over all ¢, x) € [0, T] x R';

(b) 1g"(t, X, ¥, 2)| < b(1 +|XP + |yl + 12), for all (t, X, y,2) € [0, T] x R' x R™ x R™¢, for

some positive constabt

(©) 19"(t, X, ¥, 2)| < bp(1 + [XP), for all (t,x,y,2) € [0, T] x R' x R™ x R™, for some
positive constaniy,;

(d) for any ¢, x) € [0, T] x R, and for any compact s& c R™ x R™d,

sup |g"(t, %, y,2) — g(t, X, y,2)| — 0, asn — 0. (3.3.10)
(y,2)eS

Proposition 3.3.1 The BSDE with reflecting barrier

T T
YI(8) = EX(T)) + f g'(r. X(1). Y(r), Z'(r))dr - f 2(r)dB; + K"(T) - K'(9);

Y'(s) = L(s X(9), t<s<T, fT(Y”(s) - L(s X(9))dK"(s) = 0
t

(3.3.11)
has a unique solutiogY", Z", K"). Furthermore, there exist measurable, deterministic
functionsa” and 8", such that ¥(s) = a"(s X(9)), and Z2'(s) = B"(s X(9)), for all
0<s<T.

Proof. Thisis a direct consequence of the uniform Lipschitz propefrg”, Proposition
3.2.1 and Theorem 3.3.1. O

Lemma 3.3.1 SupposeY, Z, K) solves the BSDE (3.3.2) with reflecting barrier. As-
sume (2) and (4) of Assumption 3.3.1. Then there exists éiygosbnstant C, such
that

.
E[ sup Y(9)% + f Z(r)?ds+ K(T)?| < C(1 + [x?P¥D), (3.3.12)
0<s<T t

The constant C does not depend on t, but depends on mER(X(T))?] andE

supL*(t, X(t))z].
[0.7]
Proof. First prove that, for some consta@t, we have

.
E[Y(s)z + f Z(r)2ds+ K(T)?| < C'(1 + [x?®YD), forall0< s< T.  (3.3.13)
t
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Applying Itd’s rule toY(-)?, and integrating frons to T, we get

Y(9)?% + fT Z(r)%dr
=§(X(T))2 + ZfT Y(r)g(r, X(r), Y(r), Z(r))dr — 2 fT Y(r)Z(r)dB(r) + 2 fT L(r, X(r))dK(r).
° ° ) (3.3.14)
Taking expectations of (3.3.14), and using Assumptionl33), we obtain
T
]E[Y(s)2 + f Z(r)zdr]
T
<E[£(X(T))?] + ZbE[ f IY(OICL + IX()IP + 1Y ()] + IZ(r)I)dr]
T
+ 2E f L(r, X(r))dK(r) (3.3.15)

T T
<E[£(X(T))?] + 2E j; (1 + |X(r)I?P)dr +Cl(b)E[ fs |Y(r)|2dr]

]
f 1Z(r)dr

+2E

+ %E j: L(r, X(r))d K(r)}.

For anya > 0,

2 f ! L(s X(9)dK(s) < 2( supL(s, X(s)))K(T) < 1 K(T)? + a supL*(s X(9))°.
t [0,T] a [0,T]
(3.3.16)

Combine (3.3.15) and (3.3.16), and apply Gronwall's Lemon¥(t),

]E[Y(s)2 + ng Z(r)zdr]

.
f IX(r)[?Pdr

If rewriting (3.3.2) fromt to T, K(-) can be expressed in terms\of) andZ(-) by

<Co(b, T)(l + B[EX(T)Y] + B

L1 K(T)? + @ supL*(s, X(s))z).
@ [0.T]
(3.3.17)

T T
K(T) = Y(t) — &(X(T)) - jt. a(s, X(s), Y(9), Z(s))ds+ jt‘ Z(9)dBs, (3.3.18)
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and hence because of the linear growth Assumption 3.3. W&have

T T
E[K(T)z]=CsE[Y(t)2+§(X(T))2+ [ stsx@. v 207+ [ Z(s)zds]

.
f IY(9)’ds
t

SC4(b)(E[Y(t)2 +EX(T)%+1+ ft ! IX(9)[?Pds| + E

T 2
+E ft |Z(9)| dsD.
(3.3.19)
BoundE[|Y(9)]?] andE ftT |Z(s)|2ds} in (3.3.19) by (3.3.17),
T
E[K(T)?] < Cs(b, t, T)(E EX(T)?+1+ f |X(s)|2pds]
' (3.3.20)

+ gE[K(T)Z] +aE

supl (s (9 )
[0.T]
Leta = 4Cs(b,t, T), and collecE[K(T)?] terms on both sides of (3.3.20),
T
E[K(T)?] < Ce(b.t, T)E[g—‘(X(T))Z +1+ f IX(9)*Pds+ supL*(s, X(s))z]. (3.3.21)
t [0,7]
Finally, (3.3.17) and (3.3.21) altogether gives

E[Y(s)z + f ! Z(r)’ds+ K(T)Z]

- (3.3.22)
<Cz(b,t, T)(l +E[E(X(T) +E f IX(r)|?Pdr| + E| supL*(s, X(s))ZD.
t [0.7]
From page 306 of Karatzas and Shreve (1988) [33]pfarl,
E sup|X"X(s)|2p] < Cg(1 + [X%P). (3.3.23)
[0.T]

Then the constar@’ in (3.3.13) can be chosen as

C = ( sup Cr(b, t, T)) max{l +E[£(X(T))?] +E
o<t<T

supL*(s, X(S))Z],Cg-r} < 0.
[0.T]
(3.3.24)

To bound thel.? supremum norm o¥(:), taking first supremum oves € [0, T] then
expectation, on both sides of (3.3.14), using BurkholdawB-Gundy inequality, and
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combining with (3.3.16),
T
E[squ(s)2+f Z(r)zdr]
t

[0.7]

!
<E[(X(T)Y] + ZbE[ sup [ YOI+ XOP + YO+ |Z(r)|)dr]
[0,T] s
.
+ cg(m)E[ \/ | v izeedr
T
f IY(r)|2dr
t
.
+Cg(m)E[ sup|Y(s)|‘ff |Z(r)[2dr
[0.T] t

i
<E[(X(T)Y] + clo(b)E[ [ s vors |2(r)|2>dr]

+ 2E fT L(r, X(r))d K(r)]

<E[£(X(T))?] + bE +bE f T(1 + IX(NIP + 1Y) + |Z(r)|)2dr]
t

+E[K(T)?] +E

supL*(s X(s»z]
[0.T]

+1g suplY(9)|?| + 2Co(M)’E fT 1Z(r)[2dr | + E[K(T)?] + E| supL*(s, X(s))z}.
2 [T t [0.T]
(3.3.25)
Equation (3.3.25) implies that
}E[ squ(s)z}
2 |
B+ CuE] [ @ XOP VO zOR| @329
t
+ 2Co(M)’E fT 1Z(r)[2dr| + E[K(T)?] + E| supL*(s, X(s))z].
t [0.T]
Inequalities (3.3.13), (3.3.23) and (3.3.26) concluddehema. m]

Proposition 3.3.2 There exists a positive constant C, such thatGot t < T, n=
]_, 2’ cee
a"(t, x) = Y& (1) = B[YOON(1).2] < CA + [XPYY). (3.3.27)

Proposition 3.3.3 The sequenci"(-, X(-), Y"(), Z"())}n is uniformly bounded in the
L2(m; t, T)-norm, and the sequeng¢&"())}, is uniformly bounded in th&12(m;t, T)-
norm, both uniformly over all n. As s oo, g"(-, X(-), Y"(), Z"(:)) weakly converges
to some limit &) in L?(m;t, T) along a subsequence, and'({ weakly converges to
some limit K-) in M?(m; t, T) along a subsequence, for everyg §, T].

Proof. It suffices to show the uniform boundedness{df(-, X(-), Y"(:), Z"(-))}n in
L2(m; t, T) and of{K"(T)}, in L?(m), which is a result of the linear growth property (b)
and Lemma 3.3.1. THe?(m) uniform boundedness ¢K"(T)}, means that there exists
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aconstan€ < oo, such thakE[|K"(T)[?] < C. SinceK"(-) is required to be an increasing
process starting frorK"(t) = 0, then for allt < s < T, E[|K"(9)[] < E[|K"(T)?] < C.
]

With the help of weak convergence along a subsequence, veegudo argue that
the weak limits are also strong, thus deriving a solution 8DE (3.3.2). For no-
tational simplicity, the weakly convergent subsequencesstll indexed byn. The
passing from weak to strong convergence makes use of theoMarkstructure of the
system described by Theorem 3.3.1, which states that thedagroces¥"(s) is a
deterministic function of time and state proces§(s) only.

Lemma 3.3.2 The approximating sequence of solutigpg™¥", z&¥-n)} is Cauchy in
L2(m; t, T)xL2(mxd; t, T), thus having a limi{Y**, Z%%) in L?(m; t, T) x L2(mxd; t, T)
and a.e. orft, T] x Q.

Proof. For anyt € [0,T], anyx € R', and anyn = 1,2,---, Y&ON(1) = o"(t, X) is
deterministic. First prove the convergencédd@f(t, X)}, by showing it is Cauchy. From
equation (3.3.11) comes the following inequality,
la"(t, %) = @(&, X1 = IY"(t) - Y*(O)
T
B [ @6 X(9.Y'9.27(9) - 6 X(9 Y<(9. 293
t

+[E[K"(T) = KXT)]I + [E[K"(t) - KX(®)]I-

< (3.3.28)

By the weak convergence from Proposition 3.3.3, all theetlstemmands on the right
hand side of the above inequality converge to zero,aredk both go to infinity. Denote
the limit of a"(t, X) as«(t, X), which is consequently deterministic and measurable,
because"(-,-) is measurable. Theorem 3.3.1 states that fortang < T, Y&XN(s) =
a"(s, XtX(s)). Because of the pointwise convergence®f, -), Y&?(s) converges to
someY®X(s), a.e. w) € [t,T] x Q, asn — co. Proposition 3.3.2 states that there
exists a positive consta@, such thatforct<T,n=1,2,---,

Y9N = la"(s XS < C(L+ XS, (3.3.29)

the last term of which is square-integrable by (3.3.23).rThéollows from the domi-
nated convergence theorem that the convergen¥&8f(s) is also inL2(m;t, T).

Apply 1td’s rule to (Y&ON(s) — YEXK(s))2, and integrate frons to T. The reflecting
conditions that leads to the inequality (3.2.14) gives

.
(Y'(9) - YX(9)* + f (Z°(r) = Z(r))dr
< f T(Y”(Ir) = YHO)(@(r X(r), Y1), Z°(r)) = g(r, X(), YK(r). Z4(r)))dr  (3.3.30)

)
v f (V) — X)) - Z4(r)d By
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Taking expectation of (3.3.30),

.
E[(Y'(5) - YX(9))] + E f (Z°(r) - Zk(f))zdf]

<E

.
j; (Y"(r) = YS)(@(r. X(). YA(r). Z°(r)) = g(r, X(r), Y<(r), Zk(f)))dr]

SE[ f T(Y”(r) - Yk(r))zdrr
T 3
E[ [ @exo.ro.20- g X(r),vk(r),zk(r)»zdr] .
(3.3.31)

In order to prove convergence {A"(-)},, it suffices to prove uniform boundedness of
EHT g"(s, X(s),Y”(s),Z”(s))zds], for all n, which is part of Proposition 3.3.3. The

L?(mx d;t, T)-convergence ofZ"(:)}, implies almost sure convergence along a subse-
qguence, also denoted g8'(-)}, to simplify notations. m]

We have identified a strongly convergent subsequeng€ydfZ")},, also denoted as
{(Y",ZM},. Let's remind ourselves that(, Z") solves the system (3.3.1) and (3.3.11),
so if the weak limitG(-) of g"(-, X(-), Y(-), Z"(-)) is also the strong limit, and &(-) has
the formg(-, X(-), Y(-), Z(")), then the limit {, Z, K) indeed solves the forward-backward
system (3.3.1) and (3.3.2).

Lemma 3.3.3 Asn— oo, g"(s, X(9), Y(3), Z"(9)) — a(s, X(9), Y(9), Z(9)), inL2(m; t,T)
and a.e. orft, T] x Q.

Proof. The method is the same as that on page 122 of Hamadéne,ieepell Peng
(1997) [26]. The proofis briefly repeated here for completen

.
E“: 19"(s. X(s). Y'(5). Z'(9)) - 9(s. X(9). Y(9). Z(5))|0|S]

<E

.
ft 19"(s. X(9). Y*(5). 2'(9)) - 9(s. X(9). Y'(). Zn(s))m{Y”(S)+Z"(s)>A)dS]

+E

.
j: 19"(s. X(s). Y'(s). Z'(s)) — 9(s. X(8). Y'(). Zn(s))m{Y”(s)+Z”(s)<A)dS]

+E

i
[ 196 X9.¥7(9.27(9) - 5 X(9. Y9, Z(s»|ds].
(3.3.32)

By linear growth Assumption 3.3.1 (2) fgrand property (b) fog", and Lemma 3.3.1,
both |g"(s, X(), Y'(). Z'(9)) — 9(s X(s), Y'(s), Z"(s))l and [g(s, X(s), Y(s), Z"(s)) —
a(s, X(9), Y(9), Z(9)| are uniformly bounded ii.?(m; 0, T) for all n. The first term
on the right hand side of (3.3.32) is at most of the orﬁethus vanishing a# goes
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to infinity. Recalling property (d), for fixed, the second term vanishes @s— oo.
Because of its uniform boundednessLif(m;t, T), the integrand in the third term is
uniformly integrable for alh, so expectation of the integral again goes to @ as co.
The a.e. convergent subsequencayts, X(s), Y'(s), Z"(9)) is also indexed by to
simplify notations. m]

Proposition 3.3.4 TheLL?(m; t, T) convergence and the a.e. convergendd®®"(s)},
to Y (s) are uniform over all < [t, T].

Proof. To see uniform convergence ¢¥"}, applying 1td’s rule to ¥"(s) — Y(9))?,
integrating froms to T, taking supremum over & s < T and then expectation, by
Burkholder-Davis-Gundy inequality,

+E f T(z“(lr) - Z(r))zdr]
t

]E[ sup(Y"(s) - Y(9))?
[0.T]

<E

.
sup | (Y?(r) = YO)(@'(r, X(r). Y(r). Z°(r)) — o, X(f),Y(r),Z(r)))dr]

+]E(ft(Y (r) = Y()(Z"(r) — Z(r)) dr)

1

T 3, AT ;
sup (fs (Yn(r)—Y(r))zdr) (j; (g"(s, X(r), Y'(r), Z"(r)) - gr, X(r),Y(r),Z(r)))Zdr) }

s€[0,T]

<E

T 3
+E| supivie - Y(sm( [@o- Z(r»Zdr) ]

s€[0,T]

1
2

<(E T(Y”(If) = Y(r))dr % E T(@1”(& X(r), Y(r), Z°(r)) = g(r, X(r), Y(r), Z(r)))*dr
t t

1 L.
+3E +E j; (Z"(r) - Z(r))zdr].

sup|Y"(s) — Y(s)?
[0.7]

(3.3.33)
Equation (3.3.33) implies

3g sup(Y"(s) - Y(s))z]
4 lpm

T 3 T 3
<[e| [ omo-voyrar]) (2] [ @ x0.v0.260) - g xo. v, 200

t t
(3.3.34)

By Proposition 3.3.3, by linear growth properties (b)g3fand Assumption 3.3.1 (2)
ong, and by Lemma 3.3.1, the second multiplier on the right hate sf (3.3.34) is

bounded by a constant, uniformly over all By Lemma 3.3.2, the first multiplier on
the right hand side of (3.3.34) converges to zera as . Hence

lim E| sup(Y"(s) — Y(9))?| = 0. (3.3.35)
[0.T]

nN—oo
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O

Proposition 3.3.5 The process K(-) converges to some limit( in M*(m; t, T), uni-
formly over all se [t, T], and a.e. orjt, T] x Q.

Proof. Define
K(S) = Y(t) - Y(8) - ft " g X(1). Y(). Z(P)dr + ft “Z()dB.t<s<T, (3.3.36)
whereY(), Z(-) andg are the limits ofy(-), Z"(-) andg". From (3.3.11),
€9 =Y O-Y9 - [ PExO0 0200 [ Z0d8.  @23)

Need to show that
E[ sup |K"(s) - IZ(s)|] -0, (3.3.38)
s€[0,T]

asn — oo,

Foralln=1,2,---,

E[ sup|K"(s) - K_(s)|}
[0.T]

<E[ IY"(t) = Y(®)| | + E| sup|Y"(s) = Y(3)| | + E| sup fs(Z“(r)—Z(r))dB,H
[0,T] se[0,T] t
]
B ft |g”(r,X(r),Y“(r),zn(r))—g(r,X(r),Y(r),Z(r)Ndr].

(3.3.39)

As n — oo, the first three summands in (3.3.39) go to zero, by Lemma& 3F80oposi-
tion 3.3.4 and Lemma 3.3.3. From Burkholder-Davis-Gunayimlity, there exists a
constantC universal for alln, such that

ft (2'(1) - Z(r))dB,

E[ sup
s€[0,T]

} < CE[( ft ' 1Z"(r) - Z(r)|2dr)% } (3.3.40)

the right hand side of which converges to zermas o, by Lemma 3.3.2.
The a.e. convergent subsequence is still denot¢l|s)}, to simplify notations. The
strong limitK(-) coincides with the weak limiK(-) in Proposition 3.3.3. m|

Proposition 3.3.6 The processes(Y and K(-) satisfy the reflection conditiong-y >
T
L(- X()) and [ (Y(9) — L(s X(9))dK(9) = 0.

Proof. Since {{", Z", K") solves (3.3.11)Y"(:) andK(:) satisfy the reflecting conditions
Y(s) > L(SX(9),t <s<T, andf(Y”(s) — L(s X(9)))dK"(s) = 0. SinceY"(")
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converges tr(-) pointwisely on [0T] x Q, thatY(:) > L(-, X(-)) holds true. It remains
to prove

T T
ft (Y(9) - L(s X(9))dK(9) = f (V'(9 - L X(9NAK'(S.  (3.3.41)

To wit,

T T
ft (Y'(9) - L(s X(9))dK™(8) - f (Y(9) - L(s X(9))dK(9)

T T
< ft (Y'(9) = Y(9))dK"(s)| + j: (Y(9) - L(s X(9))d(K(s) - K(s))|  (3.3.42)

+

T
<| sup{Y'(s) = Y()}K™(T) f (Y(s) = L(s X(9))d(K(s) - K"(9))
s€[0,T] t

Let ntend to zero. By Proposition 3.3.4, the first summand in teeliae of (3.3.42)

converges t¢0 - K(T)| = 0, a.e. orQ2. Proposition 3.3.5 implies th#&"(s) converges
to K(s) in probability, uniformly over alk € [t, T], so the measureéK"(s) weakly con-

verges tadK(s) in probability, uniformly over alls € [t, T]. It follows that the second
summand in the last line of (3.3.42) converges to zero, a€.0 m]

We may now conclude the following existence result.

Theorem 3.3.2 Under Assumption 3.3.1, there exists a soluigr, K) to the BSDE
(3.3.2) with reflecting barrier in the Markovian framework.

Proof. The solutiong(Y", Z", KM}, to the approximating equations (3.3.11) have limits
(Y, Z,K). The triplet {Y, Z, K) is a solution to the Markovian system (3.3.1) and (3.3.2).
m]

Theorem 3.3.3 (Comparison Theorem)

SupposgYt*, Zt* KX) solves forward-backward system (3.3.1) and (3.3.2) with pa
rameter set(¢, g, L), and (Y**, Z"%, K'X) solves the forward-backward system (3.3.1)
and (3.3.2) with parameter séf, g, L). Let dimension of the equations be=ni. Un-
der Assumption 3.3.1 for both sets of parameters, if

(1) £(X) < &€(x), a.e..¥x e R;

() o(s xy.2 <g(sxYy.2), forallt <s<T,andall(x,y,2) € R xR x RY; and
(3)L(s,x) < L(s,x), forallt < s< T, and all xe R/,

then

YHX(s) < YX(9), forallt < s< T. (3.3.43)

Proof. Let {g"}, and{g"}, be, respectively, the uniform Lipschitz sequences approxi
matingg andg as in (3.3.9). According to Property (a), bafhandd™ are Lipschitz in
(y, 2), for all t andx. We notice that (2) in the conditions of this theorem imptieest

9"(s xy.2 <G (s XY, 2). (3.3.44)
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forallt < s < T,andall &y,2 € R' x R™ x R™, via construction (3.3.9). Let
(YN ZEXn KM pe solution to system (3.3.1) and (3.3.2) with parametér se
(£.g" L), and @00 ZE)n KE0.m he solution to system (3.3.1) and (3.3.2) with pa-
rameter set{, g", L). By Theorem 3.2.2,

YE0N(g) < YEIN(g) t < s< T, (3.3.45)
But asn — oo, proven earlier in this section,
YN S yEX(), YRR S YEX() ae. onf, T] x Q and inL2(m;t, T), (3.3.46)

SO
Y(s) < YHX(s),t < s< T. (3.3.47)

O

Theorem 3.3.4 (Continuous Dependence Property)
Under Assumption 3.3.1,{"*, "%, K**) solves the system (3.3.1) and (3.3.2), and
(YbX, Z4% K'X) solves the system (3.3.1) and

_ _ T _ _ T _
YEX(9) =E(XX(T)) + f o(r, X4X(r), Yo5(r), Z(r))dr - f Z(r)dB,
+ KY(T) = K¥(9); (3.3.48)
YHX(9) >L(s X"*(9), t<s< T, f T(\?t’X(s) — L(s, X¥X(5)))dK"(s) = 0,
t
then

E[(Y™(9) - Y(9)?] +E

f T(Zt’x(r) - z_t»X(r))Zdr}
° % (3.3.49)
,0<t<s<T.

— T —
<E[|¢ — £7] + CE f (VX(r) — VX(r))dIr

Proof. Apply Itd’s rule to (Y*X - \?"X)Z, and integrate fronsto T. Use Lemma 3.3.1
and Assumption 3.3.1 (2). m|

Remark 3.3.2 When the driver g is concerned about in Assumption 3.3.11323
(linear growth rates in y and z, and polynomial growth rateiyis crucial in bounding
theL2-norms thus proving convergence of a Lipschitz approxingegequence. Conti-
nuity Assumption 3.3.1 (3) is only for convenience, becauseasurable function can
always be approximated by continuous functions of the saawetlg rate.

Remark 3.3.3 The results in section 3.2 and section 3.3 are valid for arlyiteary
filtered probability space that can support a d-dimensidBawnian motion. In par-
ticular, in the canonical space set up at the beginning ofieac3.1, we may replace
Assumption 3.3.1 (1) and (2) with the more general Assumi8.1 (1) and (2°),
while still getting exactly the same statements in sectiBmath tiny modifications of
the proofs. Assumption 3.3.1 corresponds to Assumptioh 8rilthe state process(>X
in (3.1.3). The growth rate (3.1.56) of the Hamiltoniansl(85) satisfies Assumption
3.3.1(2).
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Assumption 3.3.1(1") In (3.3.1), the drift f: [0,T] x C'[0,0) — R!, (t,w) —
f(t, w(t)), and volatility o : [0,T] x C'[0,00) — R>4, (t,w) — of(t, w(t)), are de-
terministic, measurable mappings such that

(L w(1) — f(t w®)] + lo(t, w(t)) - ot w(t))] < C suplw(s) - w(s)l,  (3.3.50)

O<s<t

and
1 (t, w(®)? + |o(t, w(®)? < C(l + suplw(s)lz), (3.3.51)

O<s<t

with some constant C forall <t < T, w andw in C'[0, ).
(2) In (3.3.2), the driver g is a deterministic measurablapping g: [0, T]xC'[0, c0)x
RM™d 5 R™ (t, w,Y,2) - g(t, w(t),y, 2). And

lg(t, w(t),y, 2)| < b(l + suplw(9)P + |yl + |z|), (3.3.52)

O<s<t

with some positive constant b for &l w, y, 2) € [0, T] x C'[0, c0) x R™ x R™,
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